77 research outputs found

    An Inkjet Printed Chipless RFID Sensor for Wireless Humidity Monitoring

    Get PDF
    A novel chipless RFID humidity sensor based on a finite Artificial Impedance Surface (AIS) is presented. The unit cell of the AIS is composed of three concentric loops thus obtaining three deep and high Q nulls in the electromagnetic response of the tag. The wireless sensor is fabricated using low-cost inkjet printing technology on a thin sheet of commercial coated paper. The patterned surface is placed on a metal backed cardboard layer. The relative humidity information is encoded in the frequency shift of the resonance peaks. Varying the relative humidity level from 50% to 90%, the frequency shift has proven to be up to 270MHz. The position of the resonance peaks has been correlated to the relative humidity level of the environment on the basis of a high number of measurements performed in a climatic chamber, specifically designed for RF measurements of the sensor. A very low error probability of the proposed sensor is demonstrated when the device is used with a 10% RH humidity level discrimination

    Critical Management Issues for Implementing RFID in Supply Chain Management

    Get PDF
    The benefits of radio frequency identification (RFID) technology in the supply chain are fairly compelling. It has the potential to revolutionise the efficiency, accuracy and security of the supply chain with significant impact on overall profitability. A number of companies are actively involved in testing and adopting this technology. It is estimated that the market for RFID products and services will increase significantly in the next few years. Despite this trend, there are major impediments to RFID adoption in supply chain. While RFID systems have been around for several decades, the technology for supply chain management is still emerging. We describe many of the challenges, setbacks and barriers facing RFID implementations in supply chains, discuss the critical issues for management and offer some suggestions. In the process, we take an in-depth look at cost, technology, standards, privacy and security and business process reengineering related issues surrounding RFID technology in supply chains

    Polarization Insensitive Compact Chipless RFID Tag

    Get PDF
    This research article proposes a highly dense, inexpensive, flexible and compact 29 x 29 mm(2) chipless radio frequency identification (RFID) tag. The tag has a 38-bit data capacity, which indicates that it has the ability to label 238 number of different objects. The proposed RFID tag has a bar-shape slot/resonator based structure, which is energized by dual-polarized electromagnetic (EM) waves. Thus, portraying polarization insensitive nature of the tag. The radar cross-section (RCS) response of the proposed tag design is analyzed using different substrates, i.e., Rogers RT/duroid (R)/5880, Taconic (TLX-0), and Kapton (R) HN (DuPont (TM)). A comparative analysis is done, which reveal the changes observed in the RCS curve, as a result of using different substrates and radiators. Moreover, the effect on the RCS response of the tag is also examined, by bending the tag at different bent radii. The compactness and flexible nature of the tag makes it the best choice for Internet of things (IoT) based smart monitoring applications

    Passively-coded embedded microwave sensors for materials characterization and structural health monitoring (SHM)

    Get PDF
    Monitoring and maintaining civil, space, and aerospace infrastructure is an ongoing critical problem facing our nation. As new complex materials and structures, such as multilayer composites and inflatable habitats, become ubiquitous, performing inspection of their structural integrity becomes even more challenging. Thus, novel nondestructive testing (NDT) methods are needed. Chipless RFID is a relatively new technology that has the potential to address these needs. Chipless RFID tags have the advantage of being wireless and passive, meaning that they do not require a power source or an electronic chip. They can also be used in a variety of sensing applications including monitoring temperature, strain, moisture, and permittivity. However, these tags have yet to be used as embedded sensors. By embedding chipless RFID tags in materials, materials characterization can be performed via multi-bit sensing; that is, looking at how the multi-bit code assigned to the response of the tag changes as a function of material. This thesis develops this method through both simulation and measurement. In doing so, a new coding method and tag design are developed to better support this technique. Furthermore, inkjet-printing is explored as a manufacturing method for these tags and various measurement methods for tags including radar cross-section and microwave thermography are explored --Abstract, page iii

    Directly Printed Nanomaterial Sensor for Strain and Vibration Measurement

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 기계공학부, 2020. 8. 안성훈.Most discussions about Industrie 4.0 tacitly assume that any such system would involve the processing and evaluation of large data volumes. Specifically, the operation of complex production processes requires stable and reliable data measurement and communication systems. However, while modern sensor technology may already be capable of collecting a wide range of machine and production data, it has been proving difficult to measure and analyse the data which is not easy to measurable and feed the results quickly back into an optimised production cycle. This is why the cost and installation of sensor, data acquisition, and transmission systems for flexible and adaptive manufacturing process have not been match the requirement of industrial demands. In this dissertation, directly printed nanomaterial sensor capable of strain and vibration measurement with high sensitivity and wide measurable range was fabricated using aerodynamically focused nanomaterial (AFN) printing system which is a direct printing technique for conductive and stretchable pattern printing onto flexible substrate. Specifically, microscale porous conductive pattern composed of silver nanoparticles (AgNPs) and multi-walled carbon nanotubes (MWCNTs) composite was printed onto polydimethylsiloxane (PDMS). Printing mechanism of AFN printing system for nanocomposite onto flexible substrate in order of mechanical crack generation, seed layer deposition, partial aggregation, and fully deposition was demonstrated and experimentally validated. The printed nanocomposite sensor exhibited gauge factor (GF) of 58.7, measurable range of 0.74, and variance in peak resistance under 0.05 during 1,000 times life cycle evaluation test. Furthermore, vibration measurement performance was evaluated according to vibration amplitude and frequency with Q-factor evaluation and statistical verification. Sensing mechanism for nanocomposite sensor was also analysed and discussed by both analytical and statistical methods. First, electron tunnelling effect among nanomaterials was analysed statistically using bivariate probit model. Since electrical property varies by the geometrical properties of nanomaterial, Monte Carlo simulation method based on Lennard-Jones (LJ) potential model and the voter model was developed for deeper understanding of the dynamics of nanomaterial by strain. By simply counting the average attachment among nanomaterials by strain, electrical conductivity was easily estimated with low simulation cost. The main objective of all processes to manufacture high-tech products is compliance with the specified ranges of permissible variation. In this perspective, all data must be recorded that might provide some evidence of status changes anywhere along the process chain. This dissertation covers the monitoring of forming and milling process. By measurement of mechanical deformation of stamp during forming process, it was possible to estimate the forming force according to various process parameters including maximum force, force gradient, and the thickness of sheet metal. Furthermore, accurate and reliable vibration monitoring was also conducted during milling process by simple and direct attachment of printed sensor to workpiece. Using frequency and power spectrum analysis of obtained data, the vibration of workpiece was measured during milling process according to process parameters including RPM, feed rate, cutting depth and width of spindle. Finally, developed sensor was applied to the digital twin of turbine blade manufacturing that vibration greatly affects the quality of product to predict the process defects in real time. To overcome the wire required data acquisition and transmission system, directly printed wireless communication sensor was also developed using chipless radio frequency identification (RFID) technology. It is one of the widely used technique for internet-of-things (IoT) devices due to low-cost, printability, and simplicity. The developed stretchable and chipless RFID sensor exhibited GF more than 0.6 and maximum measurable range more than 0.2 with high degree-of-freedom of motion. Since it showed its original characteristics of sensing in only one direction independently, sensor patch composed of various sensor with different resonance frequency was capable of measuring not only normal strains but also shear strains in all directions. Sensors in machinery and equipment can provide valuable clues as to whether or not the actual values will fall into the tolerance range. In this aspect, a real-time, accurate, and reliable process monitoring is a basic and crucial enabler of intelligent manufacturing operations and digital twin applications. In this dissertation, developed sensor was used for various manufacturing process include forming process, milling process, and wireless communication using highly sensitive and wide measuring properties with low fabrication cost. It is expected that developed sensor could be applied for the digital twin and process defects prediction in real-time.4차 산업혁명에 대한 대부분의 논의는 많은 양의 데이터를 처리하고 평가하는 시스템을 암묵적으로 가정한다. 특히, 복잡한 생산 공정을 운영하기 위해서는 안정적이고 신뢰할 수 있는 데이터 측정 및 통신 시스템이 필요하다. 하지만, 최신 센서 기술은 광범위한 기계 및 생산 공정 중 데이터를 수집하는 것이 가능하지만 측정하기 쉽지 않은 데이터를 측정하고 분석하여 그 결과를 최적화된 생산 공정에 신속하게 제공하는데 한계를 가지고 있다. 때문에, 유연하고 적응 가능한 제조 공정을 위한 센서의 가격과 설치 방법, 데이터 수집 및 전송 시스템이 실제 산업의 요구 사항에 도달하지 못하고 있다. 이 학위 논문에서는 유연 기판에 전도성 및 신축성 패턴을 직접 인쇄할 수 있는 공기역학적 나노물질 집속 인쇄 시스템을 사용하여 높은 민감도와 넓은 측정 가능 범위를 가진 변위 및 진동 센서를 개발하였다. 구체적으로, 은 나노입자와 다중 벽 탄소 나노튜브로 구성된 나노 복합재를 폴리디메틸실록산 위에 직접 인쇄하였다. 유연 기판 위에 공기역학적 나노물질 집속 인쇄 시스템을 사용한 나노 복합재 인쇄 방법의 기작이 기계적 균열 발생, 시드층 적층, 부분 응집 및 완전 증착 순으로 논의 및 실험적으로 검증되었다. 인쇄된 나노 복합재 센서는 58.7의 게이지 팩터, 0.74의 측정 가능 범위를 나타내었으며 1,000번 반복된 수명 주기 평가에서 5% 미만의 정점 저항 변화를 확인할 수 있었다. 또한 Q 인자 평가 및 통계 검증을 사용하여 진동의 진폭 및 주파수에 따른 진동 측정 성능을 평가하였다. 나노 복합재 센서에 대한 측정 기작 또한 해석적 및 통계적 방법으로 분석되었다. 먼저, 나노물질 간 터널 효과가 이변량 프로빗 모델을 통해 통계적으로 분석되었다. 센서의 전기적 물성이 나노물질의 기하학적 물성에 따라 상이하기 때문에 변위에 따른 나노물질의 동적인 이해를 위해 레너드존스 전위 및 유권자 모델을 기반으로 한 몬테카를로 시뮬레이션 방법이 개발되었다. 이를 활용하여 나노물질 간 평균 부착 수를 계산하여 낮은 비용으로 전기전도도를 추정할 수 있었다. 첨단 제품을 제조하기 위한 모든 공정의 주요 목표는 지정된 범위의 허용 가능한 변동을 준수하는 것이다. 이를 위해 공정 중 어디에서나 상태 변경의 증거를 제공할 수 있는 모든 데이터를 기록하는 것이 필수적이다. 이 학위 논문에서는 제작된 센서를 통해 성형 및 절삭 공정의 데이터를 기록함으로써 공정을 모니터링하였다. 성형 공정 동안 스탬프의 기계적 변형을 측정함으로써 최대 힘, 힘의 구배 및 판금의 두께를 포함하는 다양한 공정 변수에 따라 성형 힘을 추정할 수 있었다. 또한, 절삭 공정 중 공작물에 제작된 센서를 직접 부착하여 정확하고 안정적인 진동 모니터링을 수행하였다. 얻어진 데이터의 주파수 및 전력 스펙트럼 분석을 이용하여, 분당 회전 수, 이송 속도, 스핀들의 절삭 깊이 및 너비에 따른 공작물의 진동을 측정하였다. 마지막으로 제조된 센서를 진동이 제품 품질에 큰 영향을 미치는 터빈 동익 제조 공정의 디지털 트윈으로 적용하여 실시간으로 공정 결함을 예측하였다. 유선 데이터 수집 및 전송 시스템을 극복하기 위해 칩리스 무선 주파수 식별 기술을 사용하여 직접 인쇄된 무선 통신 센서를 개발하였다. 칩리스 무선 주파수 식별 기술은 저비용, 인쇄성 및 공정의 평이성으로 인해 사물 인터넷 장치에 널리 사용되는 기술 중 하나이다. 개발된 유연한 칩리스 센서는 0.6 이상의 게이지 팩터와 0.2 이상의 측정 가능 범위를 나타냈다. 또한 제작된 센서는 한 방향의 변위만 독립적으로 측정할 수 있는 특성을 가지고 있기 때문에, 모든 방향의 수직 및 전단 변형을 측정할 수 있는 다양한 공진 주파수로 구성된 센서 패치가 개발되었다. 기계 및 장비의 센서는 실제 값이 공차 범위에 속하는지 여부에 대한 중요한 단서를 제공할 수 있다. 이러한 측면에서, 정확하고 신뢰할 수 있는 실시간 공정 모니터링은 지능형 제조 공정 및 디지털 트윈으로의 응용을 위한 기본적이고 결정적인 요소이다. 이 학위 논문에서 개발된 센서는 낮은 제조 비용과 높은 민감도 및 신축성을 가지고 있기 때문에 성형 공정, 절삭 공정, 무선 통신을 포함한 다양한 제조 공정에서 응용되었다. 뿐만 아니라 제작된 센서는 디지털 트윈 및 공정 결함의 실시간 예측을 위해 다양하게 사용될 수 있을 것으로 예상된다.Chapter 1. Introduction 1 1.1. Toward smart manufacturing 1 1.2. Sensor in manufacturing 4 1.3. Research objective 11 Chapter 2. Background 16 2.1. Aerodynamically focused nanomaterial printing 16 2.2. Printing system envelope 26 2.3. Highly sensitive sensor printing 34 Chapter 3. Sensor fabrication and evaluation 42 3.1. Highly sensitive and wide measuring sensor printing 42 3.2. Sensing performance evaluation 59 3.3. Environmental and industrial evaluation 87 Chapter 4. Sensing mechanism analysis 97 4.1. Theoretical background 97 4.2. Statistical regression anaylsis 101 4.3. Monte Carlo simulation 104 Chapter 5. Application to process monitoring 126 5.1. Forming process monitoring 126 5.2. Milling process monitoring 133 5.3. Wireless communication monitoring 149 Chapter 6. Conclusion 185 Bibliography 192 Abstract in Korean 211Docto

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    Design of an Ultra-wideband Radio Frequency Identification System with Chipless Transponders

    Get PDF
    The state-of-the-art commercially available radio-frequency identification (RFID) transponders are usually composed of an antenna and an application specific integrated circuit chip, which still makes them very costly compared to the well-established barcode technology. Therefore, a novel low-cost RFID system solution based on passive chipless RFID transponders manufactured using conductive strips on flexible substrates is proposed in this work. The chipless RFID transponders follow a specific structure design, which aim is to modify the shape of the impinged electromagnetic wave to embed anidentification code in it and then backscatter the encoded signal to the reader. This dissertation comprises a multidisciplinary research encompassing the design of low-cost chipless RFID transponders with a novel frequency coding technique, unlike usually disregarded in literature, this approach considers the communication channel effects and assigns a unique frequency response to each transponder. Hence, the identification codes are different enough, to reduce the detection error and improve their automatic recognition by the reader while working under normal conditions. The chipless RFID transponders are manufactured using different materials and state-of-the-art mass production fabrication processes, like printed electronics. Moreover, two different reader front-ends working in the ultra-wideband (UWB) frequency range are used to interrogate the chipless RFID transponders. The first one is built using high-performance off-theshelf components following the stepped frequency modulation (SFM) radar principle, and the second one is a commercially available impulse radio (IR) radar. Finally, the two readers are programmed with algorithms based on the conventional minimum distance and maximum likelihood detection techniques, considering the whole transponder radio frequency (RF) response, instead of following the commonly used approach of focusing on specific parts of the spectrum to detect dips or peaks. The programmed readers automatically identify when a chipless RFID transponder is placed within their interrogation zones and proceed to the successful recognition of its embedded identification code. Accomplishing in this way, two novel fully automatic SFM- and IRRFID readers for chipless transponders. The SFM-RFID system is capable to successfully decode up to eight different chipless RFID transponders placed sequentially at a maximum reading range of 36 cm. The IR-RFID system up to four sequentially and two simultaneously placed different chipless RFID transponders within a 50 cm range.:Acknowledgments Abstract Kurzfassung Table of Contents Index of Figures Index of Tables Index of Abbreviations Index of Symbols 1 Introduction 1.1 Motivation 1.2 Scope of Application 1.3 Objectives and Structure Fundamentals of the RFID Technology 2.1 Automatic Identification Systems Background 2.1.1 Barcode Technology 2.1.2 Optical Character Recognition 2.1.3 Biometric Procedures 2.1.4 Smart Cards 2.1.5 RFID Systems 2.2 RFID System Principle 2.2.1 RFID Features 2.3 RFID with Chipless Transponders 2.3.1 Time Domain Encoding 2.3.2 Frequency Domain Encoding 2.4 Summary Manufacturing Technologies 3.1 Organic and Printed Electronics 3.1.1 Substrates 3.1.2 Organic Inks 3.1.3 Screen Printing 3.1.4 Flexography 3.2 The Printing Process 3.3 A Fabrication Alternative with Aluminum or Copper Strips 3.4 Fabrication Technologies for Chipless RFID Transponders 3.5 Summary UWB Chipless RFID Transponder Design 4.1 Scattering Theory 4.1.1 Radar Cross-Section Definition 4.1.2 Radar Absorbing Material’s Principle 4.1.3 Dielectric Multilayers Wave Matrix Analysis 4.1.4 Frequency Selective Surfaces 4.2 Double-Dipoles UWB Chipless RFID Transponder 4.2.1 An Infinite Double-Dipole Array 4.2.2 Double-Dipoles UWB Chipless Transponder Design 4.2.3 Prototype Fabrication 4.3 UWB Chipless RFID Transponder with Concentric Circles 4.3.1 Concentric Circles UWB Chipless Transponder 4.3.2 Concentric Rings UWB Chipless RFID Transponder 4.4 Concentric Octagons UWB Chipless Transponders 4.4.1 Concentric Octagons UWB Chipless Transponder Design 1 4.4.2 Concentric Octagons UWB Chipless Transponder Design 2 4.5 Summary 5. RFID Readers for Chipless Transponders 5.1 Background 5.1.1 The Radar Range Equation 5.1.2 Range Resolution 5.1.3 Frequency Band Selection 5.2 Frequency Domain Reader Test System 5.2.1 Stepped Frequency Waveforms 5.2.2 Reader Architecture 5.2.3 Test System Results 5.3 Time Domain Reader 5.3.1 Novelda Radar 5.3.2 Test System Results 5.4 Summary Detection of UWB Chipless RFID Transponders 6.1 Background 6.2 The Communication Channel 6.2.1 AWGN Channel Modeling and Detection 6.2.2 Free-Space Path Loss Modeling and Normalization 6.3 Detection and Decoding of Chipless RFID Transponders 6.3.1 Minimum Distance Detector 6.3.2 Maximum Likelihood Detector 6.3.3 Correlator Detector 6.3.4 Test Results 6.4 Simultaneous Detection of Multiple UWB Chipless Transponders 6.5 Summary System Implementation 7.1 SFM-UWB RFID System with CR-Chipless Transponders 7.2 IR-UWB RFID System with COD1-Chipless Transponders 7.3 Summary Conclusion and Outlook References Publications Appendix A RCS Calculation Measurement Setups Appendix B Resistance and Skin Depth Calculation Appendix C List of Videos Test Videos Consortium Videos Curriculum Vita

    Advanced Radio Frequency Identification Design and Applications

    Get PDF
    Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID

    Realistic chipless RFID: protocol, encoding and system latency

    Get PDF
    Chiplose Identifikation über Funkfrequenzen, RFID (engl., Radio Frequency IDentification) ist eine vielversprechende Technology, der man die Fähigkeit zuschreibt, in naher Zukunft den optischen Barcode zu ersetzen. Letztgenannter hat Einschränkungen durch i) RFID Tags sind bei nicht vorhandener Sichtverbindung (engl. Non-Line-Of-Sight, NLOS) auch nicht lesbar; ii) das Scannen der Barcodes benötigt in den meisten Fällen manuelles Eingreifen; iii) es ist unmöglich mehrere Barcodes gleichzeitig auszulesen; iv) und als Folge davon entsprechende Verzögerungen beim Auslesen größerer Mengen von Barcodes, da alle einzeln gescannt werden müssen. Die Beiträge der vorliegenden Dissertation konzentrieren sich auf drei Schwerpunkte von frequenzcodierten (engl. frequency coded, FC) chiplosen RFID Systemen. Der erste Schwerpunkt ist die gleichzeitige Identifikation von mehreren RFID Tags und kümmert sich um den Fall, dass sich mehrere RFID Tags in der Lesezone des RFID Lesegerätes befinden. Der zweite Aspekt betrifft die Verzögerung des Systems, die Zeit, das Lesegerät zum Identifizieren der RFID Tags benötigt. Und drittens die Coding Kapazität des Systems, sie ist verantwortlich für die zu erreichende Bittiefe des RFID Systems. Ein real umsetzbares RFID System erfordert Lösungen in allen drei Aspekten. Da chiplose RFID Tags keine integrierten Schaltungen (ICs) und somit auch keine Speicherbausteine besitzen, ist die Anzahl der auf dem RFID Tag speicherbaren Bits begrenzt. Und als Folge davon sind die Standards und Protokolle, die für die herkömmlichen chipbehafteten RFID Systeme entwickelt worden, nicht auf chiplose RFID Systeme übertragbar. Das wesentliche Ziel des ersten Beitrages ist die Einführung eines neuen Multi-Tag Antikollisionsprotokolls, das auf der Modulation der Notchposition (engl. Notch Position Modulation, NPM) und Tabellen (engl. Look-Up-Table, LUT) zur Bestimmung der Netzwerk- und MAC- Layer des chiplosen RFID Systems basiert. Die erste Generation der vorgeschlagenen Protokolls (Gen-1) baut auf einer Zweiteilung des zur Verfügung stehenden Spektrums auf. Im unteren Frequenzbereich, als Präambel Bandbreite bezeichnet, wird jedem RFID Tag seine individuelle Frequenzverschiebung übermittelt und im zweiten Bereich, der sogenannten Frame Bandbreite, ist die Identifikationsnummer (ID) des RFID Tags hinterlegt. Mit dieser Anordnung lässt sich jegliche Interferenz zwischen den verschiedenen RFID Tags unterbinden, da sich die Antworten der RFID Tags nicht gegenseitig überlagern. Die zweite Generation dieses Protokolls bringt eine Verbesserung sowohl bei der Coding Kapazität als auch bei der Nutzung des zur Verfügung stehenden Frequenzspektrums. Dies wird dadurch erreicht, dass die ID des RFID in einer Tabelle im Lesegerät gespeichert wird. Die individuelle Frequenzverschiebung dient dabei als Adresse für die gespeicherten IDs. Dieser Schritt vereinfacht die Komplexität der Struktur des RFID Tags signifikant, während gleichzeitig die Erkennungswahrscheinlichkeit erhöht wird. Des Weiteren werden die Key Performance Indikatoren untersucht um die Leistungsfähigkeit der Protokolle zu beweisen. Beide Protokollversionen werden modelliert und in einer Umgebung mit 10 chiplosen RFID Tags simuliert, um die Randbedingungen für die Entwicklung der RFID Tags und des RFID Lesegerätes zu ermitteln. Außerdem wird eine neuartige Testumgebung für ein MultiTag Ultra Breitband (engl. ultra wideband UWB) RFID System unter realen Testbedingungen basierend auf einem Software Defined Radio (SDR) Ansatz entwickelt. In dieser Testumgebung werden sowohl die gesendeten Signal als auch Detektierungstechniken, Leerraum Kalibrierung zur Reduzierung der Streustrahlung und die Identifikationsprotokolle untersucht. Als zweiter Schwerpunkt dieser Arbeit werden neue Techniken zur Reduzierung der Systemlaufzeit (engl. System Latency) eingeführt. Das Ziel dabei ist, die Zeit, die das RFID Lesegerät zum Erkennen aller in Lesereichweite befindlichen chiplosen FC RFID Tags braucht, zu verkürzen. Der Großteil der Systemlaufzeit wird durch das gewählte Frequenzscanverfahren, durch die Anzahl der Mittelungen zur Eliminierung der umgebenden Streustrahlung und durch die Dauer eines Frequenzsprungs bestimmt. In dieser werden dazu ein adaptives Frequenzsprungverfahren (engl. adaptive frequency hopping, AFH) sowie ein Verfahren Mittels adaptiver gleitender Fensterung (engl. adaptive sliding window, ASW) eingeführt. Das ASW Verfahren ist dabei im Hinblick auf die Identifizierung der RFID Tags nach dem Gen-1 Protokoll entwickelt, da es ein gleitendes Fenster zur Detektierung der Notches mit einer variablen Breite zum Auslesen der ID erfordert. Im Gegensatz dazu wird das Auffinden der im Gen-2 Protokoll verwendeten Notchpattern durch das AFH Verfahren verbessert. Dies wird über variable Frequenzsprünge, die auf die jeweiligen Notchpattern optimiert werden, erreicht. Beide Verfahren haben sich als effektiv sowohl im Hinblick auf die Systemlaufzeit als auch auf die Genauigkeit erwiesen. Das ASW und das AFH Verfahren wurden dazu in der oben erwähnten Testumgebung implementiert und mit dem klassischen Frequenzsprungverfahren, feste feingraduierte Frequenzschritte, verglichen. Die Experimente haben gezeigt, dass das vorgeschlagene AFH Verfahren in Kombination mit ASW zu einer beachtlichen Reduzierung der Systemlaufzeit von 58% führen. Das Ziel des dritten Schwerpunkts dieser Arbeit ist die Einführung einer neuartigen Technik zur Erhöhung der Informationsdichte (engl. Coding capacity) in einem chiplosen FC RFID Systems. Die hierfür vorgeschlagene Modulation der Notchbreite (engl. notch width modulation, NWM) ermöglicht die Kodierung von 4 Bits (16 Zuständen) pro Resonator in dem die Notchbreite und die dazugehörige Frequenzlage ausgenutzt werden. Für jeden Notch werden 150MHz Bandbreite reserviert, innerhalb derer das Codebit durch eine bestimmte Bandbreiten an unterschiedlichen Frequenzen bestimmt wird Cj ( fk,Bl). Das bedeutet, bei einer Arbeitsfrequenz im Bereich von 2–5 GHz können so 80 Bits realisiert werden. Des Weiteren wurde eine smarte Singulärwertzerlegung (engl. smart singular value decomposition, SSVD) Technik entwickelt, um die Notchbreite zu ermitteln und eine geringe Fehlerwahrscheinlichkeit zu garantieren. Die Nutzung von Blockcodes zur Behebung von Fehlern wurde untersucht, um den größtmöglichen Nutzen aus der so gewonnene Bittiefe zu erzielen. Als Folge konnte eine große Bittiefe mit einer hohen Lesegenauigkeit bei vereinfachtem Aufbau des Lesegeräts erzielt werden. Außerdem wurde eine neuartige RFID Tag Struktur entworfen, die bei einer Größe von 4× 5 cm2 eine Codedichte von 4 Bits/cm2 erreicht. Verschiedene RFID Tag Konfigurationen wurden erstellt und das neu eingeführte Codierungsverfahren mit Hilfe von elektromagnetischen (EM) Simulation und der bereits erwähnten Testplattform überprüft. Die erzielten Ergebnisse ermöglichen ein widerstandsfähiges RFID System in einer realen Umgebung. Alle vorgeschlagenen Beiträge sind durch analytische Modelle, Simulationen und Messungen auf mögliche Probleme und die Grenzen einer Realisierung unter realistischen Bedingungen geprüft worden.Chipless Radio Frequency IDentification (RFID) is a promising technology predicted to replace the optical barcode in the near future. This is due to several problematic issues i) the barcode cannot read Non-Line-Of-Sight (NLOS) tags; ii) each barcode needs human assistance to be read; iii) it is impossible to identify multiple tags at the same time; and iv) the considerable time delay in case of massive queues because different types of objects need to be serially scanned. The contributions included in this dissertation concentrate on three main aspects of the Frequency Coded (FC) chipless RFID system. The first one is the multi-tag identification, which deals with the existence of multiple tags in the reader’s interrogation region. The second aspect is the system latency that describes the time the reader needs to identify the tags. Finally, there is the coding capacity that is responsible for designing a chipless tag with larger information bits. The aim of these aspects is to realize a chipless RFID system. Since the chipless tags are memoryless as they do not include Integrated Circuits (ICs), the number of bits to be stored in the chipless tag is limited. Consequently, the current RFID standards and protocols designed for the chipped RFID systems are not applicable to the chipless systems. The main objective of the first contribution is to introduce novel multi-tag anti-collision protocols based on Notch Position Modulation (NPM) and Look-Up-Table (LUT) schemes determining the network and MAC layers of the chipless RFID systems. The first generation of the proposed protocol (Gen-1) relies on dividing the spectrum into two parts; the first one is the preamble bandwidth that includes a unique frequency shift for each tag. The second part is the frame bandwidth which represents the tag ID. The tag ID is obtained based on the predefined frequency positions, making use of the unique frequency shift. Consequently, the interference is avoided as there will not be any overlap between the tags’ responses. The second generation of the protocol (Gen-2) introduces an improvement in the spectrum utilization and coding capacity. This is realized by transferring the tag-ID to be stored in a table in the main memory of the reader (look-up-table). The unique shift of each tag represents the address of the tag’s ID. Therefore, the complexity of the tag structure will be significantly reduced with an enhanced probability of detection. Furthermore, the key performance indicators for the chipless RFID system are explored to validate the protocol’s performance. Both protocols are modeled and simulated to identify 10-chipless tags in order to set the regulations of the tag and reader design. Moreover, a novel real-world testbed for a multi-tag Ultra Wideband (UWB) chipless RFID system based on Software Defined Radio (SDR) is introduced. In this testbed, all the signaling schemes related to the transmitted signal, the detection techniques, the empty room calibration for the clutter removal process, and the identification protocols are applied. The aim of the second aspect is to introduce novel techniques that reduce the time required by the reader to identify the FC chipless RFID tags existent in the reader’s interrogation region. This time delay is called system latency. The main parameters that significantly affect the overall system latency are the frequency scanning methodology, the number of spectrum scanning iterations for the clutter removal process, and the hop duration. Therefore, the Adaptive Frequency Hopping (AFH) and the Adaptive Sliding Window (ASW) methodologies are proposed to meet the requirements of the FC chipless RFID tags. Regarding the ASW technique, it is suitable to identify the tags using the Gen-1 protocol which utilizes a sliding window (for detecting the notch) with an adaptive size to extract the tag’s-ID. The second adaptive methodology, AFH, can identify the tags with the Gen-2 protocol by using a variable frequency step that fits the corresponding notch patterns. These techniques are proven to be efficient for the chipless RFID systems with regard to latency and accuracy. Likewise, the designed AFH and ASW technique’s performance is compared to the classical Fixed Frequency Hopping (FFH) methodology with a fine frequency step to validate the accuracy of the proposed techniques. A real-world SDR based testbed is designed and the proposed adaptive algorithms as well as the classical FFH methodology are implemented. The experiments show that the proposed AFH combined with the ASW algorithms significantly reduce the system latency by 58%. The goal of the third aspect is to introduce a novel technique that increases the coding capacity of the FC chipless RFID system. The proposed Notch Width Modulation (NWM) scheme encodes 4 bits (16-combinations) per single resonator exploiting the notch bandwidth and its corresponding frequency position. Furthermore, each notch can reserve a window with a bandwidth of 150 MHz and inside this window the notch can obtain a certain bandwidth with a specific resonant frequency constructing the coding pairs Cj ( fk,Bl). Hence, 80-bits could be achieved at the operating frequency 2–5 GHz, preserving the operating frequency bandwidth. Also, a Smart Singular Value Decomposition (SSVD) technique is designed to estimate the notch bandwidth and to ensure a low probability of error. In addition, the utilization of a linear block code as an error correcting code is explored to make the best use of the obtained coding gain. Consequently, a high encoding efficiency and an accurate detection can be achieved in addition to a simplified reader design. Moreover, a novel 4× 5 cm2 tag structure is designed to meet the requirements of the NWM coding technique achieving a coding density of 4 bits/cm2. Different tag configurations are manufactured and validated by measurements using the SDR platform. The introduced coding methodology is conclusively validated using Electromagnetic (EM) simulations and real-world testbed measurements. The considered achievements for the proposed aspects offer a robust chipless RFID system that can be considered in real scenarios. Furthermore, all the proposed contributions are validated using analytical modeling, simulation and measurements in order to list their difficulties and limitations
    corecore