2,077 research outputs found

    Modeling and Monitoring of the Dynamic Response of Railroad Bridges using Wireless Smart Sensors

    Get PDF
    Railroad bridges form an integral part of railway infrastructure in the USA, carrying approximately 40 % of the ton-miles of freight. The US Department of Transportation (DOT) forecasts current rail tonnage to increase up to 88 % by 2035. Within the railway network, a bridge occurs every 1.4 miles of track, on average, making them critical elements. In an effort to accommodate safely the need for increased load carrying capacity, the Federal Railroad Association (FRA) announced a regulation in 2010 that the bridge owners must conduct and report annual inspection of all the bridges. The objective of this research is to develop appropriate modeling and monitoring techniques for railroad bridges toward understanding the dynamic responses under a moving train. To achieve the research objective, the following issues are considered specifically. For modeling, a simple, yet effective, model is developed to capture salient features of the bridge responses under a moving train. A new hybrid model is then proposed, which is a flexible and efficient tool for estimating bridge responses for arbitrary train configurations and speeds. For monitoring, measured field data is used to validate the performance of the numerical model. Further, interpretation of the proposed models showed that those models are efficient tools for predicting response of the bridge, such as fatigue and resonance. Finally, fundamental software, hardware, and algorithm components are developed for providing synchronized sensing for geographically distributed networks, as can be found in railroad bridges. The results of this research successfully demonstrate the potentials of using wirelessly measured data to perform model development and calibration that will lead to better understanding the dynamic responses of railroad bridges and to provide an effective tool for prediction of bridge response for arbitrary train configurations and speeds.National Science Foundation Grant No. CMS-0600433National Science Foundation Grant No. CMMI-0928886National Science Foundation Grant No. OISE-1107526National Science Foundation Grant No. CMMI- 0724172 (NEESR-SD)Federal Railroad Administration BAA 2010-1 projectOpe

    Tensor-variate machine learning on graphs

    Get PDF
    Traditional machine learning algorithms are facing significant challenges as the world enters the era of big data, with a dramatic expansion in volume and range of applications and an increase in the variety of data sources. The large- and multi-dimensional nature of data often increases the computational costs associated with their processing and raises the risks of model over-fitting - a phenomenon known as the curse of dimensionality. To this end, tensors have become a subject of great interest in the data analytics community, owing to their remarkable ability to super-compress high-dimensional data into a low-rank format, while retaining the original data structure and interpretability. This leads to a significant reduction in computational costs, from an exponential complexity to a linear one in the data dimensions. An additional challenge when processing modern big data is that they often reside on irregular domains and exhibit relational structures, which violates the regular grid assumptions of traditional machine learning models. To this end, there has been an increasing amount of research in generalizing traditional learning algorithms to graph data. This allows for the processing of graph signals while accounting for the underlying relational structure, such as user interactions in social networks, vehicle flows in traffic networks, transactions in supply chains, chemical bonds in proteins, and trading data in financial networks, to name a few. Although promising results have been achieved in these fields, there is a void in literature when it comes to the conjoint treatment of tensors and graphs for data analytics. Solutions in this area are increasingly urgent, as modern big data is both large-dimensional and irregular in structure. To this end, the goal of this thesis is to explore machine learning methods that can fully exploit the advantages of both tensors and graphs. In particular, the following approaches are introduced: (i) Graph-regularized tensor regression framework for modelling high-dimensional data while accounting for the underlying graph structure; (ii) Tensor-algebraic approach for computing efficient convolution on graphs; (iii) Graph tensor network framework for designing neural learning systems which is both general enough to describe most existing neural network architectures and flexible enough to model large-dimensional data on any and many irregular domains. The considered frameworks were employed in several real-world applications, including air quality forecasting, protein classification, and financial modelling. Experimental results validate the advantages of the proposed methods, which achieved better or comparable performance against state-of-the-art models. Additionally, these methods benefit from increased interpretability and reduced computational costs, which are crucial for tackling the challenges posed by the era of big data.Open Acces

    Data Compression in Multi-Hop Large-Scale Wireless Sensor Networks

    Get PDF
    Data collection from a multi-hop large-scale outdoor WSN deployment for environmental monitoring is full of challenges due to the severe resource constraints on small battery-operated motes (e.g., bandwidth, memory, power, and computing capacity) and the highly dynamic wireless link conditions in an outdoor communication environment. We present a compressed sensing approach which can recover the sensing data at the sink with good accuracy when very few packets are collected, thus leading to a significant reduction of the network traffic and an extension of the WSN lifetime. Interplaying with the dynamic WSN routing topology, the proposed approach is efficient and simple to implement on the resource-constrained motes without motes storing of a part of random measurement matrix, as opposed to other existing compressed sensing based schemes. We provide a systematic method via machine learning to find a suitable representation basis, for the given WSN deployment and data field, which is both sparse and incoherent with the measurement matrix in the compressed sensing. We validate our approach and evaluate its performance using our real-world multi-hop WSN testbed deployment in situ in collecting the humidity and soil moisture data. The results show that our approach significantly outperforms three other compressed sensing based algorithms regarding the data recovery accuracy for the entire WSN observation field under drastically reduced communication costs. For some WSN scenarios, compressed sensing may not be applicable. Therefore we also design a generalized predictive coding framework for unified lossless and lossy data compression. In addition, we devise a novel algorithm for lossless compression to significantly improve data compression performance for variouSs data collections and applications in WSNs. Rigorous simulations show our proposed framework and compression algorithm outperform several recent popular compression algorithms for wireless sensor networks such as LEC, S-LZW and LTC using various real-world sensor data sets, demonstrating the merit of the proposed framework for unified temporal lossless and lossy data compression in WSNs

    Sparse reduced-order modelling: sensor-based dynamics to full-state estimation

    Get PDF
    We propose a general dynamic reduced-order modelling framework for typical experimental data: time-resolved sensor data and optional non-time-resolved particle image velocimetry (PIV) snapshots. This framework can be decomposed into four building blocks. First, the sensor signals are lifted to a dynamic feature space without false neighbours. Second, we identify a sparse human-interpretable nonlinear dynamical system for the feature state based on the sparse identification of nonlinear dynamics (SINDy). Third, if PIV snapshots are available, a local linear mapping from the feature state to the velocity field is performed to reconstruct the full state of the system. Fourth, a generalized feature-based modal decomposition identifies coherent structures that are most dynamically correlated with the linear and nonlinear interaction terms in the sparse model, adding interpretability. Steps 1 and 2 define a black-box model. Optional steps 3 and 4 lift the black-box dynamics to a grey-box model in terms of the identified coherent structures, if non-time-resolved full-state data are available. This grey-box modelling strategy is successfully applied to the transient and post-transient laminar cylinder wake, and compares favourably with a proper orthogonal decomposition model. We foresee numerous applications of this highly flexible modelling strategy, including estimation, prediction and control. Moreover, the feature space may be based on intrinsic coordinates, which are unaffected by a key challenge of modal expansion: the slow change of low-dimensional coherent structures with changing geometry and varying parameters

    PASTA: Pretrained Action-State Transformer Agents

    Full text link
    Self-supervised learning has brought about a revolutionary paradigm shift in various computing domains, including NLP, vision, and biology. Recent approaches involve pre-training transformer models on vast amounts of unlabeled data, serving as a starting point for efficiently solving downstream tasks. In the realm of reinforcement learning, researchers have recently adapted these approaches by developing models pre-trained on expert trajectories, enabling them to address a wide range of tasks, from robotics to recommendation systems. However, existing methods mostly rely on intricate pre-training objectives tailored to specific downstream applications. This paper presents a comprehensive investigation of models we refer to as Pretrained Action-State Transformer Agents (PASTA). Our study uses a unified methodology and covers an extensive set of general downstream tasks including behavioral cloning, offline RL, sensor failure robustness, and dynamics change adaptation. Our goal is to systematically compare various design choices and provide valuable insights to practitioners for building robust models. Key highlights of our study include tokenization at the action and state component level, using fundamental pre-training objectives like next token prediction, training models across diverse domains simultaneously, and using parameter efficient fine-tuning (PEFT). The developed models in our study contain fewer than 10 million parameters and the application of PEFT enables fine-tuning of fewer than 10,000 parameters during downstream adaptation, allowing a broad community to use these models and reproduce our experiments. We hope that this study will encourage further research into the use of transformers with first-principles design choices to represent RL trajectories and contribute to robust policy learning

    Modeling and monitoring of the dynamic response of railroad bridges using wireless smart sensors

    Get PDF
    Railroad bridges form an integral part of railway infrastructure in the USA carrying approximately 40 % of the ton-miles of freight. The US Department of Transportation (DOT) forecasts current rail tonnage to increase up to 88 % by 2035. Within the railway network, a bridge occurs every 1.4 miles of track, on average, making them critical elements. In an effort to accommodate safely the need for increased load carrying capacity, the Federal Railroad Association (FRA) announced a regulation in 2010 that the bridge owners must report annual inspection of all the bridges. Until now, visual inspection has been the most prevalent practice in monitoring this infrastructure, while high-cost and unreliability can limit the efficiency and accuracy of such assessments. With recent advances in sensing technology, structural health monitoring can be a promising solution for providing a reliable and inexpensive ways for assessing the bridges. Nonetheless, because damage is a local phenomenon, to be able to detect/ monitor existing/potential damage, densely deployed sensors are required, which is inefficient and still expensive. Alternatively, model-based monitoring strategies can be adopted to identify a critical element from a numerical model that has been calibrated with measured field data. However, this approach has been widely adopted and applied for highway bridges, while railroad bridges have received comparably less attention. The main reason for the limited number of studies is due, in part, to fundamental differences between the loading being applied to highway bridges and railroad bridges. Usually, the mass of the vehicles crossing highway bridges is assumed to be relatively small compared to the mass of the bridge itself; as a result, the mass of the vehicles are often neglecting in the problem. In contrast, the mass of a train crossing a railroad bridge can be as large as the mass of the bridge itself. Moreover, trains are typically composed of an engine, followed by multiple cars resulting in a nearly deterministic moving mass/load being applied to the bridge that varies with speed. As a consequence, numerous models have been developed to understand the dynamic response of bridges under in-service train loads, but most fail to provide a simple, yet flexible, representation of the salient features of the responses of the bridge. The objective of this research is to develop appropriate modeling and monitoring techniques for railroad bridges toward understanding the dynamic responses under a moving train. To achieve the research objective, the following issues are considered specifically. For modeling, a simple, yet effective, model is developed to capture salient features of the bridge responses under a moving train. A new hybrid model is then proposed, which is a flexible and efficient tool for estimating bridge responses for arbitrary train configurations and speeds. For monitoring, measured field data is used to validate the performance of the numerical model. Further, interpretation of the proposed models showed that those models are efficient tools for predicting response of the bridge under undesirable and local phenomena, such as fatigue and resonance. Finally, fundamental software, hardware, and algorithm components are developed for providing synchronized sensing for geographically distributed networks, as can be found in railroad bridges. The results of this research successfully demonstrate the potentials of using wirelessly measured data to perform model development and calibration that will lead to better understanding the dynamic responses of railroad bridges and to provide an effective tool for prediction of bridge response for arbitrary train configurations and speeds.Ope

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period
    corecore