7,805 research outputs found

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Lock-Free and Practical Deques using Single-Word Compare-And-Swap

    Full text link
    We present an efficient and practical lock-free implementation of a concurrent deque that is disjoint-parallel accessible and uses atomic primitives which are available in modern computer systems. Previously known lock-free algorithms of deques are either based on non-available atomic synchronization primitives, only implement a subset of the functionality, or are not designed for disjoint accesses. Our algorithm is based on a doubly linked list, and only requires single-word compare-and-swap atomic primitives, even for dynamic memory sizes. We have performed an empirical study using full implementations of the most efficient algorithms of lock-free deques known. For systems with low concurrency, the algorithm by Michael shows the best performance. However, as our algorithm is designed for disjoint accesses, it performs significantly better on systems with high concurrency and non-uniform memory architecture

    Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

    Get PDF
    We present a new non-blocking doubly-linked list implementation for an asynchronous shared-memory system. It is the first such implementation for which an upper bound on amortized time complexity has been proved. In our implementation, operations access the list via cursors. Each cursor is located at an item in the list and is local to a process. In our implementation, cursors can be used to traverse and update the list, even as concurrent operations modify the list. The implementation supports two update operations, insertBefore and delete, and two move operations, moveRight and moveLeft. An insertBefore(c, x) operation inserts an item x into the list immediately before the cursor c\u27s location. A delete(c) operation removes the item at the cursor c\u27s location and sets the cursor to the next item in the list. The move operations move the cursor one position to the right or left. Update operations use single-word Compare&Swap instructions. Move operations only read shared memory and never change the state of the data structure. If all update operations modify different parts of the list, they run completely concurrently. A cursor is active if it is initialized, but not yet removed from the process\u27s set of cursors. Let c.(op) be the maximum number of active cursors at any one time during the operation op. The amortized step complexity is O(c.(op)) for each update op and O(1) for each move. We provide a detailed correctness proof and amortized analysis of our implementation
    • …
    corecore