1,923 research outputs found

    QarSUMO: A Parallel, Congestion-optimized Traffic Simulator

    Full text link
    Traffic simulators are important tools for tasks such as urban planning and transportation management. Microscopic simulators allow per-vehicle movement simulation, but require longer simulation time. The simulation overhead is exacerbated when there is traffic congestion and most vehicles move slowly. This in particular hurts the productivity of emerging urban computing studies based on reinforcement learning, where traffic simulations are heavily and repeatedly used for designing policies to optimize traffic related tasks. In this paper, we develop QarSUMO, a parallel, congestion-optimized version of the popular SUMO open-source traffic simulator. QarSUMO performs high-level parallelization on top of SUMO, to utilize powerful multi-core servers and enables future extension to multi-node parallel simulation if necessary. The proposed design, while partly sacrificing speedup, makes QarSUMO compatible with future SUMO improvements. We further contribute such an improvement by modifying the SUMO simulation engine for congestion scenarios where the update computation of consecutive and slow-moving vehicles can be simplified. We evaluate QarSUMO with both real-world and synthetic road network and traffic data, and examine its execution time as well as simulation accuracy relative to the original, sequential SUMO

    Privacy-Friendly Mobility Analytics using Aggregate Location Data

    Get PDF
    Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates -- i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.Comment: Published at ACM SIGSPATIAL 201

    Deviation Point Curriculum Learning for Trajectory Outlier Detection in Cooperative Intelligent Transport Systems

    Get PDF
    Cooperative Intelligent Transport Systems (C-ITS) are emerging in the field of transportation systems, which can be used to provide safety, sustainability, efficiency, communication and cooperation between vehicles, roadside units, and traffic command centres. With improved network structure and traffic mobility, a large amount of trajectory-based data is generated. Trajectory-based knowledge graphs help to give semantic and interconnection capabilities for intelligent transport systems. Prior works consider trajectory as the single point of deviation for the individual outliers. However, in real-world transportation systems, trajectory outliers can be seen in the groups, e.g., a group of vehicles that deviates from a single point based on the maintenance of streets in the vicinity of the intelligent transportation system. In this paper, we propose a trajectory deviation point embedding and deep clustering method for outlier detection. We first initiate network structure and nodes' neighbours to construct a structural embedding by preserving nodes relationships. We then implement a method to learn the latent representation of deviation points in road network structures. A hierarchy multilayer graph is designed with a biased random walk to generate a set of sequences. This sequence is implemented to tune the node embeddings. After that, embedding values of the node were averaged to get the trip embedding. Finally, LSTM-based pairwise classification method is initiated to cluster the embedding with similarity-based measures. The results obtained from the experiments indicate that the proposed learning trajectory embedding captured structural identity and increased F-measure by 5.06% and 2.4% while compared with generic Node2Vec and Struct2Vec methods.acceptedVersio

    Transportation Research Challenges Based on the Analysis of EU Projects

    Get PDF
    In recent years several projects have been realised in the field of transportation, but there is a lack of systematic analysis of research challenges connected to these projects. Thus, the main aim of this paper is to provide an overview of these challenges through EU funded projects in the field of smart, green and integrated transport. Based on EU strategic documents, reports and roadmaps, 10 topics are identified playing a crucial role in transportation-related research. A systematic analysis of the projects is realised, where the projects collected from an online database in the Horizon 2020 framework programme from 2015 to 2020 are categorised into these topics. The results show that travel behaviour, big data and open data, sustainable mobility planning and smart solutions are covered by several projects which reflect the main research trends. While active and shared modes, multimodal transportation, trip optimisation and Mobility as a Service are also popular topics. Based on the results, the most underrepresented research areas are artificial intelligence and social networks. The analysis of the connections between the research topics could enable the achievement of a long-term paradigm shift in urban mobility, which is beneficial for researchers, professionals and policy makers

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    Collaborative Transportation Systems

    Get PDF
    We propose a new class of applications for Intelligent Transportation Systems (ITSs), called collaborative transportation applications that aim at solving transportation problems such as congestion and parking. Specifically, we define two applications: SmartPark and SmartRide that leverage shortrange wireless communication. We quantify the potential benefits these collaborative transportation applications can offer to an individual and to the public. To this extent, we conduct both the realistic simulations and the analysis of the performance of a taxi cab fleet from San Francisco. Our analysis shows that both collaborative transportation applications can provide with significant savings in travel times, fuel consumptions, etc. Finally, we discuss the functional requirements of collaborative transportation applications and we present the challenges that these applications are facing

    Methods and Applications of Synthetic Data Generation

    Get PDF
    The advent of data mining and machine learning has highlighted the value of large and varied sources of data, while increasing the demand for synthetic data captures the structural and statistical characteristics of the original data without revealing personal or proprietary information contained in the original dataset. In this dissertation, we use examples from original research to show that, using appropriate models and input parameters, synthetic data that mimics the characteristics of real data can be generated with sufficient rate and quality to address the volume, structural complexity, and statistical variation requirements of research and development of digital information processing systems. First, we present a progression of research studies using a variety of tools to generate synthetic network traffic patterns, enabling us to observe relationships between network latency and communication pattern benchmarks at all levels of the network stack. We then present a framework for synthesizing large scale IoT data with complex structural characteristics in a scalable extraction and synthesis framework, and demonstrate the use of generated data in the benchmarking of IoT middleware. Finally, we detail research on synthetic image generation for deep learning models using 3D modeling. We find that synthetic images can be an effective technique for augmenting limited sets of real training data, and in use cases that benefit from incremental training or model specialization, we find that pretraining on synthetic images provided a usable base model for transfer learning

    Smart Sustainable Mobility: Analytics and Algorithms for Next-Generation Mobility Systems

    Get PDF
    To this date, mobility ecosystems around the world operate on an uncoordinated, inefficient and unsustainable basis. Yet, many technology-enabled solutions that have the potential to remedy these societal negatives are already at our disposal or just around the corner. Innovations in vehicle technology, IoT devices, mobile connectivity and AI-powered information systems are expected to bring about a mobility system that is connected, autonomous, shared and electric (CASE). In order to fully leverage the sustainability opportunities afforded by CASE, system-level coordination and management approaches are needed. This Thesis sets out an agenda for Information Systems research to shape the future of CASE mobility through data, analytics and algorithms (Chapter 1). Drawing on causal inference, (spatial) machine learning, mathematical programming and reinforcement learning, three concrete contributions toward this agenda are developed. Chapter 2 demonstrates the potential of pervasive and inexpensive sensor technology for policy analysis. Connected sensing devices have significantly reduced the cost and complexity of acquiring high-resolution, high-frequency data in the physical world. This affords researchers the opportunity to track temporal and spatial patterns of offline phenomena. Drawing on a case from the bikesharing sector, we demonstrate how geo-tagged IoT data streams can be used for tracing out highly localized causal effects of large-scale mobility policy interventions while offering actionable insights for policy makers and practitioners. Chapter 3 sets out a solution approach to a novel decision problem faced by operators of shared mobility fleets: allocating vehicle inventory optimally across a network when competition is present. The proposed three-stage model combines real-time data analytics, machine learning and mixed integer non-linear programming into an integrated framework. It provides operational decision support for fleet managers in contested shared mobility markets by generating optimal vehicle re-positioning schedules in real time. Chapter 4 proposes a method for leveraging data-driven digital twin (DT) frameworks for large multi-stage stochastic design problems. Such problem classes are notoriously difficult to solve with traditional stochastic optimization. Drawing on the case of Electric Vehicle Charging Hubs (EVCHs), we show how high-fidelity, data-driven DT simulation environments fused with reinforcement learning (DT-RL) can achieve (close-to) arbitrary scalability and high modeling flexibility. In benchmark experiments we demonstrate that DT-RL-derived designs result in superior cost and service-level performance under real-world operating conditions
    • …
    corecore