24,298 research outputs found

    One brick at a time: a survey of inductive constructions in rigidity theory

    Full text link
    We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. We summarize the key outstanding open problems related to inductions.Comment: 24 pages, 12 figures, final versio

    On the Number of Embeddings of Minimally Rigid Graphs

    Full text link
    Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2n−4n−2)≈4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.88n2.88^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM2,n(C)⊂P(n2)−1(C)CM^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2n−42n-4 hyperplanes yields at most deg(CM2,n)deg(CM^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=1/2(2n−4n−2)D^{2,n}={1/2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2D3,n=2n−3n−2(n−6n−3)2 D^{3,n}= {\frac{2^{n-3}}{n-2}}{{n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 1-skeleton of a simplicial polyhedron, up to rigid motions

    Rigidity and flexibility of biological networks

    Full text link
    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks.Comment: 21 pages, 4 figures, 1 tabl

    Eigenvector Synchronization, Graph Rigidity and the Molecule Problem

    Full text link
    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend on previous work and propose the 3D-ASAP algorithm, for the graph realization problem in R3\mathbb{R}^3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch there corresponds an element of the Euclidean group Euc(3) of rigid transformations in R3\mathbb{R}^3, and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-SP-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a preprocessing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably to similar state-of-the art localization algorithms.Comment: 49 pages, 8 figure

    Onsager's missing steps retraced

    Full text link
    Onsager's paper on phase transition and phase coexistence in anisotropic colloidal systems is a landmark in the theory of lyotropic liquid crystals. However, an uncompromising scrutiny of Onsager's original derivation reveals that it would be rigorously valid only for ludicrous values of the system's number density (of the order of the reciprocal of the number of particles) Based on Penrose's tree identity and an appropriate variant of the mean-field approach for purely repulsive, hard-core interactions, our theory shows that Onsager's theory is indeed valid for a reasonable range of densities
    • …
    corecore