65 research outputs found

    Selected Topics in Bayesian Image/Video Processing

    Get PDF
    In this dissertation, three problems in image deblurring, inpainting and virtual content insertion are solved in a Bayesian framework.;Camera shake, motion or defocus during exposure leads to image blur. Single image deblurring has achieved remarkable results by solving a MAP problem, but there is no perfect solution due to inaccurate image prior and estimator. In the first part, a new non-blind deconvolution algorithm is proposed. The image prior is represented by a Gaussian Scale Mixture(GSM) model, which is estimated from non-blurry images as training data. Our experimental results on a total twelve natural images have shown that more details are restored than previous deblurring algorithms.;In augmented reality, it is a challenging problem to insert virtual content in video streams by blending it with spatial and temporal information. A generic virtual content insertion (VCI) system is introduced in the second part. To the best of my knowledge, it is the first successful system to insert content on the building facades from street view video streams. Without knowing camera positions, the geometry model of a building facade is established by using a detection and tracking combined strategy. Moreover, motion stabilization, dynamic registration and color harmonization contribute to the excellent augmented performance in this automatic VCI system.;Coding efficiency is an important objective in video coding. In recent years, video coding standards have been developing by adding new tools. However, it costs numerous modifications in the complex coding systems. Therefore, it is desirable to consider alternative standard-compliant approaches without modifying the codec structures. In the third part, an exemplar-based data pruning video compression scheme for intra frame is introduced. Data pruning is used as a pre-processing tool to remove part of video data before they are encoded. At the decoder, missing data is reconstructed by a sparse linear combination of similar patches. The novelty is to create a patch library to exploit similarity of patches. The scheme achieves an average 4% bit rate reduction on some high definition videos

    Contribution to quality of user experience provision over wireless networks

    Get PDF
    The widespread expansion of wireless networks has brought new attractive possibilities to end users. In addition to the mobility capabilities provided by unwired devices, it is worth remarking the easy configuration process that a user has to follow to gain connectivity through a wireless network. Furthermore, the increasing bandwidth provided by the IEEE 802.11 family has made possible accessing to high-demanding services such as multimedia communications. Multimedia traffic has unique characteristics that make it greatly vulnerable against network impairments, such as packet losses, delay, or jitter. Voice over IP (VoIP) communications, video-conference, video-streaming, etc., are examples of these high-demanding services that need to meet very strict requirements in order to be served with acceptable levels of quality. Accomplishing these tough requirements will become extremely important during the next years, taking into account that consumer video traffic will be the predominant traffic in the Internet during the next years. In wired systems, these requirements are achieved by using Quality of Service (QoS) techniques, such as Differentiated Services (DiffServ), traffic engineering, etc. However, employing these methodologies in wireless networks is not that simple as many other factors impact on the quality of the provided service, e.g., fading, interferences, etc. Focusing on the IEEE 802.11g standard, which is the most extended technology for Wireless Local Area Networks (WLANs), it defines two different architecture schemes. On one hand, the infrastructure mode consists of a central point, which manages the network, assuming network controlling tasks such as IP assignment, routing, accessing security, etc. The rest of the nodes composing the network act as hosts, i.e., they send and receive traffic through the central point. On the other hand, the IEEE 802.11 ad-hoc configuration mode is less extended than the infrastructure one. Under this scheme, there is not a central point in the network, but all the nodes composing the network assume both host and router roles, which permits the quick deployment of a network without a pre-existent infrastructure. This type of networks, so called Mobile Ad-hoc NETworks (MANETs), presents interesting characteristics for situations when the fast deployment of a communication system is needed, e.g., tactics networks, disaster events, or temporary networks. The benefits provided by MANETs are varied, including high mobility possibilities provided to the nodes, network coverage extension, or network reliability avoiding single points of failure. The dynamic nature of these networks makes the nodes to react to topology changes as fast as possible. Moreover, as aforementioned, the transmission of multimedia traffic entails real-time constraints, necessary to provide these services with acceptable levels of quality. For those reasons, efficient routing protocols are needed, capable of providing enough reliability to the network and with the minimum impact to the quality of the service flowing through the nodes. Regarding quality measurements, the current trend is estimating what the end user actually perceives when consuming the service. This paradigm is called Quality of user Experience (QoE) and differs from the traditional Quality of Service (QoS) approach in the human perspective given to quality estimations. In order to measure the subjective opinion that a user has about a given service, different approaches can be taken. The most accurate methodology is performing subjective tests in which a panel of human testers rates the quality of the service under evaluation. This approach returns a quality score, so-called Mean Opinion Score (MOS), for the considered service in a scale 1 - 5. This methodology presents several drawbacks such as its high expenses and the impossibility of performing tests at real time. For those reasons, several mathematical models have been presented in order to provide an estimation of the QoE (MOS) reached by different multimedia services In this thesis, the focus is on evaluating and understanding the multimedia-content transmission-process in wireless networks from a QoE perspective. To this end, firstly, the QoE paradigm is explored aiming at understanding how to evaluate the quality of a given multimedia service. Then, the influence of the impairments introduced by the wireless transmission channel on the multimedia communications is analyzed. Besides, the functioning of different WLAN schemes in order to test their suitability to support highly demanding traffic such as the multimedia transmission is evaluated. Finally, as the main contribution of this thesis, new mechanisms or strategies to improve the quality of multimedia services distributed over IEEE 802.11 networks are presented. Concretely, the distribution of multimedia services over ad-hoc networks is deeply studied. Thus, a novel opportunistic routing protocol, so-called JOKER (auto-adJustable Opportunistic acK/timEr-based Routing) is presented. This proposal permits better support to multimedia services while reducing the energy consumption in comparison with the standard ad-hoc routing protocols.Universidad Politécnica de CartagenaPrograma Oficial de Doctorado en Tecnologías de la Información y Comunicacione

    Tele-immersive display with live-streamed video.

    Get PDF
    Tang Wai-Kwan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 88-95).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Applications --- p.3Chapter 1.2 --- Motivation and Goal --- p.6Chapter 1.3 --- Thesis Outline --- p.7Chapter 2 --- Background and Related Work --- p.8Chapter 2.1 --- Panoramic Image Navigation --- p.8Chapter 2.2 --- Image Mosaicing --- p.9Chapter 2.2.1 --- Image Registration --- p.10Chapter 2.2.2 --- Image Composition --- p.12Chapter 2.3 --- Immersive Display --- p.13Chapter 2.4 --- Video Streaming --- p.14Chapter 2.4.1 --- Video Coding --- p.15Chapter 2.4.2 --- Transport Protocol --- p.18Chapter 3 --- System Design --- p.19Chapter 3.1 --- System Architecture --- p.19Chapter 3.1.1 --- Video Capture Module --- p.19Chapter 3.1.2 --- Video Streaming Module --- p.23Chapter 3.1.3 --- Stitching and Rendering Module --- p.24Chapter 3.1.4 --- Display Module --- p.24Chapter 3.2 --- Design Issues --- p.25Chapter 3.2.1 --- Modular Design --- p.25Chapter 3.2.2 --- Scalability --- p.26Chapter 3.2.3 --- Workload distribution --- p.26Chapter 4 --- Panoramic Video Mosaic --- p.28Chapter 4.1 --- Video Mosaic to Image Mosaic --- p.28Chapter 4.1.1 --- Assumptions --- p.29Chapter 4.1.2 --- Processing Pipeline --- p.30Chapter 4.2 --- Camera Calibration --- p.33Chapter 4.2.1 --- Perspective Projection --- p.33Chapter 4.2.2 --- Distortion --- p.36Chapter 4.2.3 --- Calibration Procedure --- p.37Chapter 4.3 --- Panorama Generation --- p.39Chapter 4.3.1 --- Cylindrical and Spherical Panoramas --- p.39Chapter 4.3.2 --- Homography --- p.41Chapter 4.3.3 --- Homography Computation --- p.42Chapter 4.3.4 --- Error Minimization --- p.44Chapter 4.3.5 --- Stitching Multiple Images --- p.46Chapter 4.3.6 --- Seamless Composition --- p.47Chapter 4.4 --- Image Mosaic to Video Mosaic --- p.49Chapter 4.4.1 --- Varying Intensity --- p.49Chapter 4.4.2 --- Video Frame Management --- p.50Chapter 5 --- Immersive Display --- p.52Chapter 5.1 --- Human Perception System --- p.52Chapter 5.2 --- Creating Virtual Scene --- p.53Chapter 5.3 --- VisionStation --- p.54Chapter 5.3.1 --- F-Theta Lens --- p.55Chapter 5.3.2 --- VisionStation Geometry --- p.56Chapter 5.3.3 --- Sweet Spot Relocation and Projection --- p.57Chapter 5.3.4 --- Sweet Spot Relocation in Vector Representation --- p.61Chapter 6 --- Video Streaming --- p.65Chapter 6.1 --- Video Compression --- p.66Chapter 6.2 --- Transport Protocol --- p.66Chapter 6.3 --- Latency and Jitter Control --- p.67Chapter 6.4 --- Synchronization --- p.70Chapter 7 --- Implementation and Results --- p.71Chapter 7.1 --- Video Capture --- p.71Chapter 7.2 --- Video Streaming --- p.73Chapter 7.2.1 --- Video Encoding --- p.73Chapter 7.2.2 --- Streaming Protocol --- p.75Chapter 7.3 --- Implementation Results --- p.76Chapter 7.3.1 --- Indoor Scene --- p.76Chapter 7.3.2 --- Outdoor Scene --- p.78Chapter 7.4 --- Evaluation --- p.78Chapter 8 --- Conclusion --- p.83Chapter 8.1 --- Summary --- p.83Chapter 8.2 --- Future Directions --- p.84Chapter A --- Parallax --- p.8

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Video Analysis in Indoor Soccer with a Quadcopter

    Get PDF
    • …
    corecore