171 research outputs found

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Design of high frequency transconductor ladder filters

    Get PDF

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Power-efficient current-mode analog circuits for highly integrated ultra low power wireless transceivers

    Get PDF
    In this thesis, current-mode low-voltage and low-power techniques have been applied to implement novel analog circuits for zero-IF receiver backend design, focusing on amplification, filtering and detection stages. The structure of the thesis follows a bottom-up scheme: basic techniques at device level for low voltage low power operation are proposed in the first place, followed by novel circuit topologies at cell level, and finally the achievement of new designs at system level. At device level the main contribution of this work is the employment of Floating-Gate (FG) and Quasi-Floating-Gate (QFG) transistors in order to reduce the power consumption. New current-mode basic topologies are proposed at cell level: current mirrors and current conveyors. Different topologies for low-power or high performance operation are shown, being these circuits the base for the system level designs. At system level, novel current-mode amplification, filtering and detection stages using the former mentioned basic cells are proposed. The presented current-mode filter makes use of companding techniques to achieve high dynamic range and very low power consumption with for a very wide tuning range. The amplification stage avoids gain bandwidth product achieving a constant bandwidth for different gain configurations using a non-linear active feedback network, which also makes possible to tune the bandwidth. Finally, the proposed current zero-crossing detector represents a very power efficient mixed signal detector for phase modulations. All these designs contribute to the design of very low power compact Zero-IF wireless receivers. The proposed circuits have been fabricated using a 0.5μm double-poly n-well CMOS technology, and the corresponding measurement results are provided and analyzed to validate their operation. On top of that, theoretical analysis has been done to fully explore the potential of the resulting circuits and systems in the scenario of low-power low-voltage applications.Programa Oficial de Doctorado en Tecnologías de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    Analog baseband circuits for WCDMA direct-conversion receivers

    Get PDF
    This thesis describes the design and implementation of analog baseband circuits for low-power single-chip WCDMA direct-conversion receivers. The reference radio system throughout the thesis is UTRA/FDD. The analog baseband circuit consists of two similar channels, which contain analog channel-select filters, programmable-gain amplifiers, and circuits that remove DC offsets. The direct-conversion architecture is described and the UTRA/FDD system characteristics are summarized. The UTRA/FDD specifications define the performance requirement for the whole receiver. Therefore, the specifications for the analog baseband circuit are obtained from the receiver requirements through calculations performed by hand. When the power dissipation of an UTRA/FDD direct-conversion receiver is minimized, the design parameters of an all-pole analog channel-select filter and the following Nyquist rate analog-to-digital converter must be considered simultaneously. In this thesis, it is shown that minimum power consumption is achieved with a fifth-order lowpass filter and a 15.36-MS/s Nyquist rate converter that has a 7- or 8-bit resolution. A fifth-order Chebyshev prototype with a passband ripple of 0.01 dB and a −3-dB frequency of 1.92-MHz is adopted in this thesis. The error-vector-magnitude can be significantly reduced by using a first-order 1.4-MHz allpass filter. The selected filter prototype fulfills all selectivity requirements in the analog domain. In this thesis, all the filter implementations use the opamp-RC technique to achieve insensitivity to parasitic capacitances and a high dynamic range. The adopted technique is analyzed in detail. The effect of the finite opamp unity-gain bandwidth on the filter frequency response can be compensated for by using passive methods. Compensation schemes that also track the process and temperature variations have been developed. The opamp-RC technique enables the implementation of low-voltage filters. The design and simulation results of a 1.5-V 2-MHz lowpass filter are discussed. The developed biasing scheme does not use any additional current to achieve the low-voltage operation, unlike the filter topology published previously elsewhere. Methods for removing DC offsets in UTRA/FDD direct-conversion receivers are presented. The minimum areas for cascaded AC couplings and DC-feedback loops are calculated. The distortion of the frequency response of a lowpass filter caused by a DC-feedback loop connected over the filter is calculated and a method for compensating for the distortion is developed. The time constant of an AC coupling can be increased using time-constant multipliers. This enables the implementation of AC couplings with a small silicon area. Novel time-constant multipliers suitable for systems that have a continuous reception, such as UTRA/FDD, are presented. The proposed time-constant multipliers only require one additional amplifier. In an UTRA/FDD direct-conversion receiver, the reception is continuous. In a low-power receiver, the programmable baseband gain must be changed during reception. This may produce large, slowly decaying transients that degrade the receiver performance. The thesis shows that AC-coupling networks and DC-feedback loops can be used to implement programmable-gain amplifiers, which do not produce significant transients when the gain is altered. The principles of operation, the design, and the practical implementation issues of these amplifiers are discussed. New PGA topologies suitable for continuously receiving systems have been developed. The behavior of these circuits in the presence of strong out-of-channel signals is analyzed. The interface between the downconversion mixers and the analog baseband circuit is discussed. The effect of the interface on the receiver noise figure and the trimming of mixer IIP2 are analyzed. The design and implementation of analog baseband circuits and channel-select filters for UTRA/FDD direct-conversion receivers are discussed in five application cases. The first case presents the analog baseband circuit for a chip-set receiver. A channel-select filter that has an improved dynamic range with a smaller supply current is presented next. The third and fifth application cases describe embedded analog baseband circuits for single-chip receivers. In the fifth case, the dual-mode analog baseband circuit of a quad-mode receiver designed for GSM900, DCS1800, PCS1900, and UTRA/FDD cellular systems is described. A new, highly linear low-power transconductor is presented in the fourth application case. The fourth application case also describes a channel-select filter. The filter achieves +99-dBV out-of-channel IIP2, +45-dBV out-of-channel IIP3 and 23-μVRMS input-referred noise with 2.6-mA current from a 2.7-V supply. In the fifth application case, a corresponding performance is achieved in UTRA/FDD mode. The out-of-channel IIP2 values of approximately +100 dBV achieved in this work are the best reported so far. This is also the case with the figure of merits for the analog channel-select filter and analog baseband circuit described in the fourth and fifth application cases, respectively. For equal power dissipation, bandwidth, and filter order, these circuits achieve approximately 10 dB and 15 dB higher spurious-free dynamic ranges, respectively, when compared to implementations that are published elsewhere and have the second best figure of merits.reviewe

    Polyphase filter with parametric tuning

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference

    Get PDF
    The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year

    NASA compendium of satellite communications programs

    Get PDF
    A comprehensive review is given of worldwide satellite communication programs that range in time from the inception of satellite communications to mid-1974. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed. The background for understanding these results is established through brief summaries of the program organization, system configuration, and satellite and ground terminal characteristics. Major consideration is given to the communications system aspects of each program, but general spacecraft technology and other experiments conducted as part of the same program are mentioned summarily

    Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    Get PDF
    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone

    Continuous-time low-pass filters for integrated wideband radio receivers

    Get PDF
    This thesis concentrates on the design and implementation of analog baseband continuous-time low-pass filters for integrated wideband radio receivers. A total of five experimental analog baseband low-pass filter circuits were designed and implemented as a part of five single-chip radio receivers in this work. After the motivation for the research work presented in this thesis has been introduced, an overview of analog baseband filters in radio receivers is given first. In addition, a review of the three receiver architectures and the three wireless applications that are adopted in the experimental work of this thesis is presented. The relationship between the integrator non-idealities and integrator Q-factor, as well as the effect of the integrator Q-factor on the filter frequency response, are thoroughly studied on the basis of a literature review. The theoretical study that is provided is essential for the gm-C filter synthesis with non-ideal lossy integrators that is presented after the introduction of different techniques to realize integrator-based continuous-time low-pass filters. The filter design approach proposed for gm-C filters is original work and one of the main points in this thesis, in addition to the experimental IC implementations. Two evolution versions of fourth-order 10-MHz opamp-RC low-pass filters designed and implemented for two multicarrier WCDMA base-station receivers in a 0.25-µm SiGe BiCMOS technology are presented, along with the experimental results of both the low-pass filters and the corresponding radio receivers. The circuit techniques that were used in the three gm-C filter implementations of this work are described and a common-mode induced even-order distortion in a pseudo-differential filter is analyzed. Two evolution versions of fifth-order 240-MHz gm-C low-pass filters that were designed and implemented for two single-chip WiMedia UWB direct-conversion receivers in a standard 0.13-µm and 65-nm CMOS technology, respectively, are presented, along with the experimental results of both the low-pass filters and the second receiver version. The second UWB filter design was also embedded with an ADC into the baseband of a 60-GHz 65-nm CMOS radio receiver. In addition, a third-order 1-GHz gm-C low-pass filter was designed, rather as a test structure, for the same receiver. The experimental results of the receiver and the third gm-C filter implementation are presented
    corecore