11,989 research outputs found

    Exploring Decomposition for Solving Pattern Mining Problems

    Get PDF
    This article introduces a highly efficient pattern mining technique called Clustering-based Pattern Mining (CBPM). This technique discovers relevant patterns by studying the correlation between transactions in the transaction database based on clustering techniques. The set of transactions is first clustered, such that highly correlated transactions are grouped together. Next, we derive the relevant patterns by applying a pattern mining algorithm to each cluster. We present two different pattern mining algorithms, one applying an approximation-based strategy and another based on an exact strategy. The approximation-based strategy takes into account only the clusters, whereas the exact strategy takes into account both clusters and shared items between clusters. To boost the performance of the CBPM, a GPU-based implementation is investigated. To evaluate the CBPM framework, we perform extensive experiments on several pattern mining problems. The results from the experimental evaluation show that the CBPM provides a reduction in both the runtime and memory usage. Also, CBPM based on the approximate strategy provides good accuracy, demonstrating its effectiveness and feasibility. Our GPU implementation achieves significant speedup of up to 552× on a single GPU using big transaction databases.publishedVersio

    Direct mining of subjectively interesting relational patterns

    Get PDF
    Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible

    Mining Profitable and Concise Patterns in Large-Scale Internet of Things Environments

    Get PDF
    In recent years, HUIM (or a.k.a. high-utility itemset mining) can be seen as investigated in an extensive manner and studied in many applications especially in basket-market analysis and its relevant applications. Since current basket-market scenario also involves IoT equipment to collect information, i.e., sensor or smart devices, it is necessary to consider the mining of HUIs (or a.k.a. high-utility itemsets) in a large-scale database especially with IoT situations. First, a GA-based MapReduce model is presented in this work known as GMR-Miner for mining closed patterns with high utilization in large-scale databases. The -means model is initially adopted to group transactions regarding their relevant correlation based on the frequency factor. A genetic algorithm (GA) is utilized in the developed MapReduce framework that can be used to explore the potential and possible candidates in a limited time. Also, the developed 3-tier MapReduce model can be easily deployed in Spark for the handlings of any database of large scale for knowledge discovery of closed patterns with high utilization. We created sets of extensive experimental environments for evaluating the results of the developed GMR-Miner compared to the well-known and state-of-the-art CLS-Miner. We present our in-depth results to show that the developed GMR-Miner outperforms CLS-Miner in many criteria, i.e., memory usage, scalability, and runtime.publishedVersio

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining
    corecore