9,388 research outputs found

    The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems

    Full text link
    Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.comComment: IEEE International Conference on Intelligent Transportation Systems (ITSC) 201

    Traffic Justice: Achieving Effective and Equitable Traffic Enforcement in the Age of Vision Zero

    Get PDF

    Planning for Density in a Driverless World

    Get PDF
    Automobile-centered, low-density development was the defining feature of population growth in the United States for decades. This development pattern displaced wildlife, destroyed habitat, and contributed to a national loss of biodiversity. It also meant, eventually, that commutes and air quality worsened, a sense of local character was lost in many places, and the negative consequences of sprawl impacted an increasing percentage of the population. Those impacts led to something of a shift in the national attitude toward sprawl. More people than ever are fluent in concepts of “smart growth,” “new urbanism,” and “green building,” and with these tools and others, municipalities across the country are working to redevelop a central core, rethink failing transit systems, and promote pockets of density. Changing technology may disrupt this trend. Self-driving vehicles are expected to be widespread within the next several decades. Those vehicles will likely reduce congestion, air pollution, and deaths, and free up huge amounts of productive time in the car. These benefits may also eliminate much of the conventional motivation and rationale behind sprawl reduction. As the time-cost of driving falls, driverless cars have the potential to incentivize human development of land that, by virtue of its distance from settled metropolitan areas, had been previously untouched. From the broader ecological perspective, each human surge into undeveloped land results in habitat destruction and fragmentation, and additional loss of biological diversity. New automobile technology may therefore usher in better air quality, increased safety, and a significant threat to ecosystem health. Our urban and suburban environments have been molded for centuries to the needs of various forms of transportation. The same result appears likely to occur in response to autonomous vehicles, if proactive steps are not taken to address their likely impacts. Currently, little planning is being done to prepare for driverless technology. Actors at multiple levels, however, have tools at their disposal to help ensure that new technology does not come at the expense of the nation’s remaining natural habitats. This Article advocates for a shift in paradigm from policies that are merely anti-car to those that are pro-density, and provides suggestions for both cities and suburban areas for how harness the positive aspects of driverless cars while trying to stem the negative. Planning for density regardless of technology will help to ensure that, for the world of the future, there is actually a world

    Paving the Roadway for Safety of Automated Vehicles: An Empirical Study on Testing Challenges

    Full text link
    The technology in the area of automated vehicles is gaining speed and promises many advantages. However, with the recent introduction of conditionally automated driving, we have also seen accidents. Test protocols for both, conditionally automated (e.g., on highways) and automated vehicles do not exist yet and leave researchers and practitioners with different challenges. For instance, current test procedures do not suffice for fully automated vehicles, which are supposed to be completely in charge for the driving task and have no driver as a back up. This paper presents current challenges of testing the functionality and safety of automated vehicles derived from conducting focus groups and interviews with 26 participants from five countries having a background related to testing automotive safety-related topics.We provide an overview of the state-of-practice of testing active safety features as well as challenges that needs to be addressed in the future to ensure safety for automated vehicles. The major challenges identified through the interviews and focus groups, enriched by literature on this topic are related to 1) virtual testing and simulation, 2) safety, reliability, and quality, 3) sensors and sensor models, 4) required scenario complexity and amount of test cases, and 5) handover of responsibility between the driver and the vehicle.Comment: 8 page

    Carpooling Liability?: Applying Tort Law Principles to the Joint Emergence of Self-Driving Automobiles and Transportation Network Companies

    Get PDF
    Self-driving automobiles have emerged as the future of vehicular travel, but this innovation is not developing in isolation. Simultaneously, the popularity of transportation network companies functioning as ride-hailing and ride-sharing services have altered traditional conceptions of personal transportation. Technology companies, conventional automakers, and start-up businesses each play significant roles in fundamentally transforming transportation methods. These transformations raise numerous liability questions. Specifically, the emergence of self-driving vehicles and transportation network companies create uncertainty for the application of tort law’s negligence standard. This Note addresses technological innovations in vehicular transportation and their accompanying legislative and regulatory developments. Then, this Note discusses the implications for vicarious liability for vehicle owners, duties of care for vehicle operators, and corresponding insurance regimes. This Note also considers theoretical justifications for tort concepts including enterprise liability. Accounting for the inevitable uncertainty in applying tort law to new invention, this Note proposes a strict and vicarious liability regime with corresponding no-fault automobile insurance

    Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The safety, mobility, environmental and economic benefits of Connected and Autonomous Vehicles (CAVs) are potentially dramatic. However, realization of these benefits largely hinges on the timely upgrading of the existing transportation system. CAVs must be enabled to send and receive data to and from other vehicles and drivers (V2V communication) and to and from infrastructure (V2I communication). Further, infrastructure and the transportation agencies that manage it must be able to collect, process, distribute and archive these data quickly, reliably, and securely. This paper focuses on current digital roadway infrastructure initiatives and highlights the importance of including digital infrastructure investment alongside more traditional infrastructure investment to keep up with the auto industry's push towards this real time communication and data processing capability. Agencies responsible for transportation infrastructure construction and management must collaborate, establishing national and international platforms to guide the planning, deployment and management of digital infrastructure in their jurisdictions. This will help create standardized interoperable national and international systems so that CAV technology is not deployed in a haphazard and uncoordinated manner
    • …
    corecore