1,128 research outputs found

    On Spectral Coexistence of CP-OFDM and FB-MC Waveforms in 5G Networks

    Full text link
    Future 5G networks will serve a variety of applications that will coexist on the same spectral band and geographical area, in an uncoordinated and asynchronous manner. It is widely accepted that using CP-OFDM, the waveform used by most current communication systems, will make it difficult to achieve this paradigm. Especially, CP-OFDM is not adapted for spectral coexistence because of its poor spectral localization. Therefore, it has been widely suggested to use filter bank based multi carrier (FB-MC) waveforms with enhanced spectral localization to replace CP-OFDM. Especially, FB-MC waveforms are expected to facilitate coexistence with legacy CP-OFDM based systems. However, this idea is based on the observation of the PSD of FB-MC waveforms only. In this paper, we demonstrate that this approach is flawed and show what metric should be used to rate interference between FB-MC and CP-OFDM systems. Finally, our results show that using FB-MC waveforms does not facilitate coexistence with CP-OFDM based systems to a high extent.Comment: Manuscript submitted for review to IEEE Transactions on Wireless Communication

    Interference Characterization in Multiple Access Wireless Networks

    Get PDF
    Contrarily to the point to point wireless link approach adopted in several wireless networks, where a dedicated channel is usually supporting an exclusive-use wireless link, in the last years several wireless communication systems have followed a different approach. In the so called “multiple access wireless networks”, multiple transmitters share the same communication channel in a simultaneous way, supporting a shared-use of the wireless link. The deployment of multiple access networks has also originated the emergence of various communication networks operating in the same geographical area and spectrum space, which is usually referred to as wireless coexistence. As a consequence of the presence of multiple networks with different technologies that share the same spectral bands, robust methods of interference management are needed. At the same time, the adoption of in-band Full-duplex (IBFDX) communication schemes, in which a given node transmit and receive simultaneously over the same frequency band, is seen as a disruptive topic in multiple access networks, capable of doubling the network’s capacity. Motivated by the importance of the interference in multiple access networks, this thesis addresses new approaches to characterize the interference in multiple access networks. A special focus is given to the assumption of mobility for the multiple transmitters. The problem of coexistence interference caused by multiple networks operating in the same band is also considered. Moreover, given the importance of the residual self-interference (SI) in practical IBFDX multiple access networks, we study the distribution of the residual SI power in a wireless IBFDX communication system. In addition, different applications of the proposed interference models are presented, including the definition of a new sensing capacity metric for cognitive radio networks, the performance evaluation of wireless-powered coexisting networks, the computation of an optimal carrier-sensing range in coexisting CSMA networks, and the estimation of residual self-interference in IBFDX communication systems

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Interference and Coverage Analysis in Coexisting RF and Dense TeraHertz Wireless Networks

    Full text link
    This paper develops a stochastic geometry framework to characterize the statistics of the downlink interference and coverage probability of a typical user in a coexisting terahertz (THz) and radio frequency (RF) network. We first characterize the exact Laplace Transform (LT) of the aggregate interference and coverage probability of a user in a THz-only network. Then, for a coexisting RF/THz network, we derive the coverage probability of a typical user considering biased received signal power association (BRSP). The framework can be customized to capture the performance of a typical user in various network configurations such as THz-only, opportunistic RF/THz, and hybrid RF/THz. In addition, asymptotic approximations are presented for scenarios where the intensity of THz BSs becomes large or molecular absorption coefficient in THz approaches to zero. Numerical results demonstrate the accuracy of the derived expressions and extract insights related to the significance of the BRSP association compared to the conventional reference signal received power (RSRP) association in the coexisting network

    Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

    Full text link
    Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.Comment: IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550 - 560, Apr. 201
    • …
    corecore