5,401 research outputs found

    General highlight detection in sport videos

    Get PDF
    Attention is a psychological measurement of human reflection against stimulus. We propose a general framework of highlight detection by comparing attention intensity during the watching of sports videos. Three steps are involved: adaptive selection on salient features, unified attention estimation and highlight identification. Adaptive selection computes feature correlation to decide an optimal set of salient features. Unified estimation combines these features by the technique of multi-resolution autoregressive (MAR) and thus creates a temporal curve of attention intensity. We rank the intensity of attention to discriminate boundaries of highlights. Such a framework alleviates semantic uncertainty around sport highlights and leads to an efficient and effective highlight detection. The advantages are as follows: (1) the capability of using data at coarse temporal resolutions; (2) the robustness against noise caused by modality asynchronism, perception uncertainty and feature mismatch; (3) the employment of Markovian constrains on content presentation, and (4) multi-resolution estimation on attention intensity, which enables the precise allocation of event boundaries

    A semantic event detection approach for soccer video based on perception concepts and finite state machines

    Get PDF
    A significant application area for automated video analysis technology is the generation of personalized highlights of sports events. Sports games are always composed of a range of significant events. Automatically detecting these events in a sports video can enable users to interactively select their own highlights. In this paper we propose a semantic event detection approach based on Perception Concepts and Finite State Machines to automatically detect significant events within soccer video. Firstly we define a Perception Concept set for soccer videos based on identifiable feature elements within a soccer video. Secondly we design PC-FSM models to describe semantic events in soccer videos. A particular strength of this approach is that users are able to design their own semantic events and transfer event detection into graph matching. Experimental results based on recorded soccer broadcasts are used to illustrate the potential of this approach

    Unsupervised Human Action Detection by Action Matching

    Full text link
    We propose a new task of unsupervised action detection by action matching. Given two long videos, the objective is to temporally detect all pairs of matching video segments. A pair of video segments are matched if they share the same human action. The task is category independent---it does not matter what action is being performed---and no supervision is used to discover such video segments. Unsupervised action detection by action matching allows us to align videos in a meaningful manner. As such, it can be used to discover new action categories or as an action proposal technique within, say, an action detection pipeline. Moreover, it is a useful pre-processing step for generating video highlights, e.g., from sports videos. We present an effective and efficient method for unsupervised action detection. We use an unsupervised temporal encoding method and exploit the temporal consistency in human actions to obtain candidate action segments. We evaluate our method on this challenging task using three activity recognition benchmarks, namely, the MPII Cooking activities dataset, the THUMOS15 action detection benchmark and a new dataset called the IKEA dataset. On the MPII Cooking dataset we detect action segments with a precision of 21.6% and recall of 11.7% over 946 long video pairs and over 5000 ground truth action segments. Similarly, on THUMOS dataset we obtain 18.4% precision and 25.1% recall over 5094 ground truth action segment pairs.Comment: IEEE International Conference on Computer Vision and Pattern Recognition CVPR 2017 Workshop

    A semantic content analysis model for sports video based on perception concepts and finite state machines

    Get PDF
    In automatic video content analysis domain, the key challenges are how to recognize important objects and how to model the spatiotemporal relationships between them. In this paper we propose a semantic content analysis model based on Perception Concepts (PCs) and Finite State Machines (FSMs) to automatically describe and detect significant semantic content within sports video. PCs are defined to represent important semantic patterns for sports videos based on identifiable feature elements. PC-FSM models are designed to describe spatiotemporal relationships between PCs. And graph matching method is used to detect high-level semantic automatically. A particular strength of this approach is that users are able to design their own highlights and transfer the detection problem into a graph matching problem. Experimental results are used to illustrate the potential of this approac

    Detecting complex events in user-generated video using concept classifiers

    Get PDF
    Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed byconstructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events
    corecore