182,073 research outputs found

    Refinement Types as Higher Order Dependency Pairs

    Get PDF
    Refinement types are a well-studied manner of performing in-depth analysis on functional programs. The dependency pair method is a very powerful method used to prove termination of rewrite systems; however its extension to higher order rewrite systems is still the object of active research. We observe that a variant of refinement types allow us to express a form of higher-order dependency pair criterion that only uses information at the type level, and we prove the correctness of this criterion

    Higher-order dependency pairs

    Get PDF
    International audienceArts and Giesl proved that the termination of a first-order rewrite system can be reduced to the study of its ``dependency pairs''. We extend these results to rewrite systems on simply typed lambda-terms by using Tait's computability technique

    Refinement types as higher order dependency pairs

    Get PDF
    International audienceRefinement types are a well-studied manner of performing in-depth analysis on functional programs. The dependency pair method is a very powerful method used to prove termination of rewrite systems; however its extension to higher-order rewrite systems is still the subject of active research. We observe that a variant of refinement types allows us to express a form of higher-order dependency pair method: from the rewrite system labeled with typing information, we build a type-level approximated dependency graph, and describe a type level embedding-order. We describe a syntactic termination criterion involving the graph and the order, and prove our main result: if the graph passes the criterion, then every well-typed term is strongly normalizing.Nous modifions l'approche classique de la terminaison a base de tailles et montrons que le système modifie permet une analyse fine du flot de contrôle dans un langage d'ordre supérieur. Ceci nous permet de construire un graphe, dit graphe de dépendance approxime, et nous pouvons montrer qu'un critère syntaxique sur ce graphe suffit a montrer la terminaison de tout terme bien type

    Dynamic Dependency Pairs for Algebraic Functional Systems

    Get PDF
    We extend the higher-order termination method of dynamic dependency pairs to Algebraic Functional Systems (AFSs). In this setting, simply typed lambda-terms with algebraic reduction and separate {\beta}-steps are considered. For left-linear AFSs, the method is shown to be complete. For so-called local AFSs we define a variation of usable rules and an extension of argument filterings. All these techniques have been implemented in the higher-order termination tool WANDA

    Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

    Get PDF
    Dependency pairs are a key concept at the core of modern automated termination provers for first-order term rewriting systems. In this paper, we introduce an extension of this technique for a large class of dependently-typed higher-order rewriting systems. This extends previous results by Wahlstedt on the one hand and the first author on the other hand to strong normalization and non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti

    MU-TERM: Verify Termination Properties Automatically (System Description)

    Full text link
    [EN] We report on the new version of mu-term, a tool for proving termination properties of variants of rewrite systems, including conditional, context-sensitive, equational, and order-sorted rewrite systems. We follow a unified logic-based approach to describe rewriting computations. The automatic generation of logical models for suitable first-order theories and formulas provide a common basis to implement the proofs.Supported by EU (FEDER), and projects RTI2018-094403-B-C32,PROMETEO/ 2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). MU-TERM: Verify Termination Properties Automatically (System Description). Springer Nature. 436-447. https://doi.org/10.1007/978-3-030-51054-1_28S436447Alarcón, B., et al.: Improving context-sensitive dependency pairs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 636–651. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_44Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. Inf. Comput. 208(8), 922–968 (2010). https://doi.org/10.1016/j.ic.2010.03.003Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_12Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A∨C{A} \vee {C}-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_4Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-8Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://doi.org/10.1007/s10817-007-9087-9Giesl, J., Arts, T.: Verification of erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001). https://doi.org/10.1007/s002000100063Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_12Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-VGutiérrez, R., Lucas, S.: Function calls at frozen positions in termination of context-sensitive rewriting. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 311–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_15Gutiérrez, R., Lucas, S.: Proving termination in the context-sensitive dependency pair framework. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 18–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_3Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility conditions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNAI, vol. 12167, pp. 416–435. Springer, Heidelberg (2020)Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Log. Program. 1998(1), 1–61 (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002). https://doi.org/10.1006/inco.2002.3176Lucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reasoning 60(4), 465–501 (2017). https://doi.org/10.1007/s10817-017-9419-3Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 15–17 July 2008, Valencia, Spain, pp. 108–119. ACM (2008). https://doi.org/10.1145/1389449.1389463Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebraic Methods Program. 86(1), 236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020). https://doi.org/10.1007/s10817-020-09542-3McCune, W.: Prover9 & Mace4. Technical report (2005–2010). http://www.cs.unm.edu/~mccune/prover9/Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002). https://doi.org/10.1007/978-1-4757-3661-8 . http://www.springer.com/computer/swe/book/978-0-387-95250-5Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 92–106. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61735-3_6Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17(1), 23–50 (1994). https://doi.org/10.1006/jsco.1994.1003Zantema, H.: Termination of context-sensitive rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_6
    • …
    corecore