68 research outputs found

    Higher-order cover cuts from zero–one knapsack constraints augmented by two-sided bounding inequalities

    Get PDF
    AbstractExtending our work on second-order cover cuts [F. Glover, H.D. Sherali, Second-order cover cuts, Mathematical Programming (ISSN: 0025-5610 1436-4646) (2007), doi:10.1007/s10107-007-0098-4. (Online)], we introduce a new class of higher-order cover cuts that are derived from the implications of a knapsack constraint in concert with supplementary two-sided inequalities that bound the sums of sets of variables. The new cuts can be appreciably stronger than the second-order cuts, which in turn dominate the classical knapsack cover inequalities. The process of generating these cuts makes it possible to sequentially utilize the second-order cuts by embedding them in systems that define the inequalities from which the higher-order cover cuts are derived. We characterize properties of these cuts, design specialized procedures to generate them, and establish associated dominance relationships. These results are used to devise an algorithm that generates all non-dominated higher-order cover cuts, and, in particular, to formulate and solve suitable separation problems for deriving a higher-order cut that deletes a given fractional solution to an underlying continuous relaxation. We also discuss a lifting procedure for further tightening any generated cut, and establish its polynomial-time operation for unit-coefficient cuts. A numerical example is presented that illustrates these procedures and the relative strength of the generated non-redundant, non-dominated higher-order cuts, all of which turn out to be facet-defining for this example. Some preliminary computational results are also presented to demonstrate the efficacy of these cuts in comparison with lifted minimal cover inequalities for the underlying knapsack polytope

    Strategic Surveillance System Design for Ports and Waterways

    Get PDF
    The purpose of this dissertation is to synthesize a methodology to prescribe a strategic design of a surveillance system to provide the required level of surveillance for ports and waterways. The method of approach to this problem is to formulate a linear integer programming model to prescribe a strategic surveillance system design (SSD) for ports or waterways, to devise branch-and-price decomposition (

    Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization

    Get PDF
    Many real-life decision problems are discrete in nature. To solve such problems as mathematical optimization problems, integrality constraints are commonly incorporated in the model to reflect the choice of finitely many alternatives. At the same time, it is known that semidefinite programming is very suitable for obtaining strong relaxations of combinatorial optimization problems. In this dissertation, we study the interplay between semidefinite programming and integrality, where a special focus is put on the use of cutting-plane methods. Although the notions of integrality and cutting planes are well-studied in linear programming, integer semidefinite programs (ISDPs) are considered only recently. We show that manycombinatorial optimization problems can be modeled as ISDPs. Several theoretical concepts, such as the ChvĂĄtal-Gomory closure, total dual integrality and integer Lagrangian duality, are studied for the case of integer semidefinite programming. On the practical side, we introduce an improved branch-and-cut approach for ISDPs and a cutting-plane augmented Lagrangian method for solving semidefinite programs with a large number of cutting planes. Throughout the thesis, we apply our results to a wide range of combinatorial optimization problems, among which the quadratic cycle cover problem, the quadratic traveling salesman problem and the graph partition problem. Our approaches lead to novel, strong and efficient solution strategies for these problems, with the potential to be extended to other problem classes

    Mixed Integer Programming Approaches for Group Decision Making

    Get PDF
    Group decision making problems are everywhere in our day-to-day lives and have great influence on the daily operation of companies and institutions. With the recent advances in computational technology, it's not surprising that some companies would want to harvest that power to aid their decision-making procedures. Ethelo, the company that we partnered with in this project, developed an online platform that aids decision-making procedures by formulating the decision-making problem as a mixed integer nonlinear program (MINLP), providing feedback by solving the MINLP in real-time, and allowing the general public to contribute their opinions. Since an interactive component is involved, it is the goal of this thesis to attempt to reduce the solve time of their MINLP by applying tools from Operational Research. The main contribution in this thesis is threefold: first, we noticed that a big proportion of the MINLPs can be easily reposed as linear integer programs, and that a runtime reduction of at least 87.9\% can be achieved by simply redirecting them to a linear solver. Second, we identified a knapsack-like polyhedral structure that, to the best of our knowledge, has not been studied before, and derived a sufficient condition to identify the cases for which all valid cuts can be derived by considering other knapsack or covering problems. Finally, for the more general case where the objective function is nonlinear and not continuous, we derived a few different formulations to get to different approximations of the nonlinear model, and tested all of the approximations computationally

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San JosĂ© (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and MĂĄlaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International ScientiïŹc Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Mathematical Models and Decomposition Algorithms for Cutting and Packing Problems

    Get PDF
    In this thesis, we provide (or review) new and effective algorithms based on Mixed-Integer Linear Programming (MILP) models and/or decomposition approaches to solve exactly various cutting and packing problems. The first three contributions deal with the classical bin packing and cutting stock problems. First, we propose a survey on the problems, in which we review more than 150 references, implement and computationally test the most common methods used to solve the problems (including branch-and-price, constraint programming (CP) and MILP), and we successfully propose new instances that are difficult to solve in practice. Then, we introduce the BPPLIB, a collection of codes, benchmarks, and links for the two problems. Finally, we study in details the main MILP formulations that have been proposed for the problems, we provide a clear picture of the dominance and equivalence relations that exist among them, and we introduce reflect, a new pseudo-polynomial formulation that achieves state of the art results for both problems and some variants. The following three contributions deal with two-dimensional packing problems. First, we propose a method using Logic based Benders’ decomposition for the orthogonal stock cutting problem and some extensions. We solve the master problem through an MILP model while CP is used to solve the slave problem. Computational experiments on classical benchmarks from the literature show the effectiveness of the proposed approach. Then, we introduce TwoBinGame, a visual application we developed for students to interactively solve two-dimensional packing problems, and analyze the results obtained by 200 students. Finally, we study a complex optimization problem that originates from the packaging industry, which combines cutting and scheduling decisions. For its solution, we propose mathematical models and heuristic algorithms that involve a non-trivial decomposition method. In the last contribution, we study and strengthen various MILP and CP approaches for three project scheduling problems

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    • 

    corecore