18 research outputs found

    A Minty variational principle for set optimization

    Full text link
    Extremal problems are studied involving an objective function with values in (order) complete lattices of sets generated by so called set relations. Contrary to the popular paradigm in vector optimization, the solution concept for such problems, introduced by F. Heyde and A. L\"ohne, comprises the attainment of the infimum as well as a minimality property. The main result is a Minty type variational inequality for set optimization problems which provides a sufficient optimality condition under lower semicontinuity assumptions and a necessary condition under appropriate generalized convexity assumptions. The variational inequality is based on a new Dini directional derivative for set-valued functions which is defined in terms of a "lattice difference quotient": A residual operation in a lattice of sets replaces the inverse addition in linear spaces. Relationships to families of scalar problems are pointed out and used for proofs: The appearance of improper scalarizations poses a major difficulty which is dealt with by extending known scalar results such as Diewert's theorem to improper functions

    Second-order optimality conditions for problems with C1 data

    Get PDF
    AbstractIn this paper we obtain second-order optimality conditions of Karush–Kuhn–Tucker type and Fritz John one for a problem with inequality constraints and a set constraint in nonsmooth settings using second-order directional derivatives. In the necessary conditions we suppose that the objective function and the active constraints are continuously differentiable, but their gradients are not necessarily locally Lipschitz. In the sufficient conditions for a global minimum x¯ we assume that the objective function is differentiable at x¯ and second-order pseudoconvex at x¯, a notion introduced by the authors [I. Ginchev, V.I. Ivanov, Higher-order pseudoconvex functions, in: I.V. Konnov, D.T. Luc, A.M. Rubinov (Eds.), Generalized Convexity and Related Topics, in: Lecture Notes in Econom. and Math. Systems, vol. 583, Springer, 2007, pp. 247–264], the constraints are both differentiable and quasiconvex at x¯. In the sufficient conditions for an isolated local minimum of order two we suppose that the problem belongs to the class C1,1. We show that they do not hold for C1 problems, which are not C1,1 ones. At last a new notion parabolic local minimum is defined and it is applied to extend the sufficient conditions for an isolated local minimum from problems with C1,1 data to problems with C1 one

    On multiobjective optimization from the nonsmooth perspective

    Get PDF
    Practical applications usually have multiobjective nature rather than having only one objective to optimize. A multiobjective problem cannot be solved with a single-objective solver as such. On the other hand, optimization of only one objective may lead to an arbitrary bad solutions with respect to other objectives. Therefore, special techniques for multiobjective optimization are vital. In addition to multiobjective nature, many real-life problems have nonsmooth (i.e. not continuously differentiable) structure. Unfortunately, many smooth (i.e. continuously differentiable) methods adopt gradient-based information which cannot be used for nonsmooth problems. Since both of these characteristics are relevant for applications, we focus here on nonsmooth multiobjective optimization. As a research topic, nonsmooth multiobjective optimization has gained only limited attraction while the fields of nonsmooth single-objective and smooth multiobjective optimization distinctively have attained greater interest. This dissertation covers parts of nonsmooth multiobjective optimization in terms of theory, methodology and application. Bundle methods are widely considered as effective and reliable solvers for single-objective nonsmooth optimization. Therefore, we investigate the use of the bundle idea in the multiobjective framework with three different methods. The first one generalizes the single-objective proximal bundle method for the nonconvex multiobjective constrained problem. The second method adopts the ideas from the classical steepest descent method into the convex unconstrained multiobjective case. The third method is designed for multiobjective problems with constraints where both the objectives and constraints can be represented as a difference of convex (DC) functions. Beside the bundle idea, all three methods are descent, meaning that they produce better values for each objective at each iteration. Furthermore, all of them utilize the improvement function either directly or indirectly. A notable fact is that none of these methods use scalarization in the traditional sense. With the scalarization we refer to the techniques transforming a multiobjective problem into the single-objective one. As the scalarization plays an important role in multiobjective optimization, we present one special family of achievement scalarizing functions as a representative of this category. In general, the achievement scalarizing functions suit well in the interactive framework. Thus, we propose the interactive method using our special family of achievement scalarizing functions. In addition, this method utilizes the above mentioned descent methods as tools to illustrate the range of optimal solutions. Finally, this interactive method is used to solve the practical case studies of the scheduling the final disposal of the spent nuclear fuel in Finland.Käytännön optimointisovellukset ovat usein luonteeltaan ennemmin moni- kuin yksitavoitteisia. Erityisesti monitavoitteisille tehtäville suunnitellut menetelmät ovat tarpeen, sillä monitavoitteista optimointitehtävää ei sellaisenaan pysty ratkaisemaan yksitavoitteisilla menetelmillä eikä vain yhden tavoitteen optimointi välttämättä tuota mielekästä ratkaisua muiden tavoitteiden suhteen. Monitavoitteisuuden lisäksi useat käytännön tehtävät ovat myös epäsileitä siten, etteivät niissä esiintyvät kohde- ja rajoitefunktiot välttämättä ole kaikkialla jatkuvasti differentioituvia. Kuitenkin monet optimointimenetelmät hyödyntävät gradienttiin pohjautuvaa tietoa, jota ei epäsileille funktioille ole saatavissa. Näiden molempien ominaisuuksien ollessa keskeisiä sovelluksia ajatellen, keskitytään tässä työssä epäsileään monitavoiteoptimointiin. Tutkimusalana epäsileä monitavoiteoptimointi on saanut vain vähän huomiota osakseen, vaikka sekä sileä monitavoiteoptimointi että yksitavoitteinen epäsileä optimointi erikseen ovat aktiivisia tutkimusaloja. Tässä työssä epäsileää monitavoiteoptimointia on käsitelty niin teorian, menetelmien kuin käytännön sovelluksien kannalta. Kimppumenetelmiä pidetään yleisesti tehokkaina ja luotettavina menetelminä epäsileän optimointitehtävän ratkaisemiseen ja siksi tätä ajatusta hyödynnetään myös tässä väitöskirjassa kolmessa eri menetelmässä. Ensimmäinen näistä yleistää yksitavoitteisen proksimaalisen kimppumenetelmän epäkonveksille monitavoitteiselle rajoitteiselle tehtävälle sopivaksi. Toinen menetelmä hyödyntää klassisen nopeimman laskeutumisen menetelmän ideaa konveksille rajoitteettomalle tehtävälle. Kolmas menetelmä on suunniteltu erityisesti monitavoitteisille rajoitteisille tehtäville, joiden kohde- ja rajoitefunktiot voidaan ilmaista kahden konveksin funktion erotuksena. Kimppuajatuksen lisäksi kaikki kolme menetelmää ovat laskevia eli ne tuottavat joka kierroksella paremman arvon jokaiselle tavoitteelle. Yhteistä on myös se, että nämä kaikki hyödyntävät parannusfunktiota joko suoraan sellaisenaan tai epäsuorasti. Huomattavaa on, ettei yksikään näistä menetelmistä hyödynnä skalarisointia perinteisessä merkityksessään. Skalarisoinnilla viitataan menetelmiin, joissa usean tavoitteen tehtävä on muutettu sopivaksi yksitavoitteiseksi tehtäväksi. Monitavoiteoptimointimenetelmien joukossa skalarisoinnilla on vankka jalansija. Esimerkkinä skalarisoinnista tässä työssä esitellään yksi saavuttavien skalarisointifunktioiden perhe. Yleisesti saavuttavat skalarisointifunktiot soveltuvat hyvin interaktiivisten menetelmien rakennuspalikoiksi. Täten kuvaillaan myös esiteltyä skalarisointifunktioiden perhettä hyödyntävä interaktiivinen menetelmä, joka lisäksi hyödyntää laskevia menetelmiä optimaalisten ratkaisujen havainnollistamisen apuna. Lopuksi tätä interaktiivista menetelmää käytetään aikatauluttamaan käytetyn ydinpolttoaineen loppusijoitusta Suomessa

    Duality in mathematical programming.

    Get PDF
    In this thesis entitled, “Duality in Mathematical Programming”, the emphasis is given on formulation and conceptualization of the concepts of second-order duality, second-order mixed duality, second-order symmetric duality in a variety of nondifferentiable nonlinear programming under suitable second-order convexity/second-order invexity and generalized second-order convexity / generalized second-order invexity. Throughout the thesis nondifferentiablity occurs due to square root function and support functions. A support function which is more general than square root of a positive definite quadratic form. This thesis also addresses second-order duality in variational problems under suitable second-order invexity/secondorder generalized invexity. The duality results obtained for the variational problems are shown to be a dynamic generalization for thesis of nonlinear programming problem.Digital copy of Thesis.University of Kashmir
    corecore