149 research outputs found

    Factoid question answering for spoken documents

    Get PDF
    In this dissertation, we present a factoid question answering system, specifically tailored for Question Answering (QA) on spoken documents. This work explores, for the first time, which techniques can be robustly adapted from the usual QA on written documents to the more difficult spoken documents scenario. More specifically, we study new information retrieval (IR) techniques designed for speech, and utilize several levels of linguistic information for the speech-based QA task. These include named-entity detection with phonetic information, syntactic parsing applied to speech transcripts, and the use of coreference resolution. Our approach is largely based on supervised machine learning techniques, with special focus on the answer extraction step, and makes little use of handcrafted knowledge. Consequently, it should be easily adaptable to other domains and languages. In the work resulting of this Thesis, we have impulsed and coordinated the creation of an evaluation framework for the task of QA on spoken documents. The framework, named QAst, provides multi-lingual corpora, evaluation questions, and answers key. These corpora have been used in the QAst evaluation that was held in the CLEF workshop for the years 2007, 2008 and 2009, thus helping the developing of state-of-the-art techniques for this particular topic. The presentend QA system and all its modules are extensively evaluated on the European Parliament Plenary Sessions English corpus composed of manual transcripts and automatic transcripts obtained by three different Automatic Speech Recognition (ASR) systems that exhibit significantly different word error rates. This data belongs to the CLEF 2009 track for QA on speech transcripts. The main results confirm that syntactic information is very useful for learning to rank question candidates, improving results on both manual and automatic transcripts unless the ASR quality is very low. Overall, the performance of our system is comparable or better than the state-of-the-art on this corpus, confirming the validity of our approach.En aquesta Tesi, presentem un sistema de Question Answering (QA) factual, especialment ajustat per treballar amb documents orals. En el desenvolupament explorem, per primera vegada, quines tècniques de les habitualment emprades en QA per documents escrit són suficientment robustes per funcionar en l'escenari més difícil de documents orals. Amb més especificitat, estudiem nous mètodes de Information Retrieval (IR) dissenyats per tractar amb la veu, i utilitzem diversos nivells d'informació linqüística. Entre aquests s'inclouen, a saber: detecció de Named Entities utilitzant informació fonètica, "parsing" sintàctic aplicat a transcripcions de veu, i també l'ús d'un sub-sistema de detecció i resolució de la correferència. La nostra aproximació al problema es recolza en gran part en tècniques supervisades de Machine Learning, estant aquestes enfocades especialment cap a la part d'extracció de la resposta, i fa servir la menor quantitat possible de coneixement creat per humans. En conseqüència, tot el procés de QA pot ser adaptat a altres dominis o altres llengües amb relativa facilitat. Un dels resultats addicionals de la feina darrere d'aquesta Tesis ha estat que hem impulsat i coordinat la creació d'un marc d'avaluació de la taska de QA en documents orals. Aquest marc de treball, anomenat QAst (Question Answering on Speech Transcripts), proporciona un corpus de documents orals multi-lingüe, uns conjunts de preguntes d'avaluació, i les respostes correctes d'aquestes. Aquestes dades han estat utilitzades en les evaluacionis QAst que han tingut lloc en el si de les conferències CLEF en els anys 2007, 2008 i 2009; d'aquesta manera s'ha promogut i ajudat a la creació d'un estat-de-l'art de tècniques adreçades a aquest problema en particular. El sistema de QA que presentem i tots els seus particulars sumbòduls, han estat avaluats extensivament utilitzant el corpus EPPS (transcripcions de les Sessions Plenaries del Parlament Europeu) en anglès, que cónté transcripcions manuals de tots els discursos i també transcripcions automàtiques obtingudes mitjançant tres reconeixedors automàtics de la parla (ASR) diferents. Els reconeixedors tenen característiques i resultats diferents que permetes una avaluació quantitativa i qualitativa de la tasca. Aquestes dades pertanyen a l'avaluació QAst del 2009. Els resultats principals de la nostra feina confirmen que la informació sintàctica és mol útil per aprendre automàticament a valorar la plausibilitat de les respostes candidates, millorant els resultats previs tan en transcripcions manuals com transcripcions automàtiques, descomptat que la qualitat de l'ASR sigui molt baixa. En general, el rendiment del nostre sistema és comparable o millor que els altres sistemes pertanyents a l'estat-del'art, confirmant així la validesa de la nostra aproximació

    Learning to represent, categorise and rank in community question answering

    Get PDF
    The task of Question Answering (QA) is arguably one of the oldest tasks in Natural Language Processing, attracting high levels of interest from both industry and academia. However, most research has focused on factoid questions, e.g. Who is the president of Ireland? In contrast, research on answering non-factoid questions, such as manner, reason, difference and opinion questions, has been rather piecemeal. This was largely due to the absence of available labelled data for the task. This is changing, however, with the growing popularity of Community Question Answering (CQA) websites, such as Quora, Yahoo! Answers and the Stack Exchange family of forums. These websites provide natural labelled data allowing us to apply machine learning techniques. Most previous state-of-the-art approaches to the tasks of CQA-based question answering involved handcrafted features in combination with linear models. In this thesis we hypothesise that the use of handcrafted features can be avoided and the tasks can be approached with representation learning techniques, specifically deep learning. In the first part of this thesis we give an overview of deep learning in natural language processing and empirically evaluate our hypothesis on the task of detecting semantically equivalent questions, i.e. predicting if two questions can be answered by the same answer. In the second part of the thesis we address the task of answer ranking, i.e. determining how suitable an answer is for a given question. In order to determine the suitability of representation learning for the task of answer ranking, we provide a rigorous experimental evaluation of various neural architectures, based on feedforward, recurrent and convolutional neural networks, as well as their combinations. This thesis shows that deep learning is a very suitable approach to CQA-based QA, achieving state-of-the-art results on the two tasks we addressed

    Neural Generative Question Answering

    Full text link
    This paper presents an end-to-end neural network model, named Neural Generative Question Answering (GENQA), that can generate answers to simple factoid questions, based on the facts in a knowledge-base. More specifically, the model is built on the encoder-decoder framework for sequence-to-sequence learning, while equipped with the ability to enquire the knowledge-base, and is trained on a corpus of question-answer pairs, with their associated triples in the knowledge-base. Empirical study shows the proposed model can effectively deal with the variations of questions and answers, and generate right and natural answers by referring to the facts in the knowledge-base. The experiment on question answering demonstrates that the proposed model can outperform an embedding-based QA model as well as a neural dialogue model trained on the same data.Comment: Accepted by IJCAI 201

    Neural Representations of Concepts and Texts for Biomedical Information Retrieval

    Get PDF
    Information retrieval (IR) methods are an indispensable tool in the current landscape of exponentially increasing textual data, especially on the Web. A typical IR task involves fetching and ranking a set of documents (from a large corpus) in terms of relevance to a user\u27s query, which is often expressed as a short phrase. IR methods are the backbone of modern search engines where additional system-level aspects including fault tolerance, scale, user interfaces, and session maintenance are also addressed. In addition to fetching documents, modern search systems may also identify snippets within the documents that are potentially most relevant to the input query. Furthermore, current systems may also maintain preprocessed structured knowledge derived from textual data as so called knowledge graphs, so certain types of queries that are posed as questions can be parsed as such; a response can be an output of one or more named entities instead of a ranked list of documents (e.g., what diseases are associated with EGFR mutations? ). This refined setup is often termed as question answering (QA) in the IR and natural language processing (NLP) communities. In biomedicine and healthcare, specialized corpora are often at play including research articles by scientists, clinical notes generated by healthcare professionals, consumer forums for specific conditions (e.g., cancer survivors network), and clinical trial protocols (e.g., www.clinicaltrials.gov). Biomedical IR is specialized given the types of queries and the variations in the texts are different from that of general Web documents. For example, scientific articles are more formal with longer sentences but clinical notes tend to have less grammatical conformity and are rife with abbreviations. There is also a mismatch between the vocabulary of consumers and the lingo of domain experts and professionals. Queries are also different and can range from simple phrases (e.g., COVID-19 symptoms ) to more complex implicitly fielded queries (e.g., chemotherapy regimens for stage IV lung cancer patients with ALK mutations ). Hence, developing methods for different configurations (corpus, query type, user type) needs more deliberate attention in biomedical IR. Representations of documents and queries are at the core of IR methods and retrieval methodology involves coming up with these representations and matching queries with documents based on them. Traditional IR systems follow the approach of keyword based indexing of documents (the so called inverted index) and matching query phrases against the document index. It is not difficult to see that this keyword based matching ignores the semantics of texts (synonymy at the lexeme level and entailment at phrase/clause/sentence levels) and this has lead to dimensionality reduction methods such as latent semantic indexing that generally have scale-related concerns; such methods also do not address similarity at the sentence level. Since the resurgence of neural network methods in NLP, the IR field has also moved to incorporate advances in neural networks into current IR methods. This dissertation presents four specific methodological efforts toward improving biomedical IR. Neural methods always begin with dense embeddings for words and concepts to overcome the limitations of one-hot encoding in traditional NLP/IR. In the first effort, we present a new neural pre-training approach to jointly learn word and concept embeddings for downstream use in applications. In the second study, we present a joint neural model for two essential subtasks of information extraction (IE): named entity recognition (NER) and entity normalization (EN). Our method detects biomedical concept phrases in texts and links them to the corresponding semantic types and entity codes. These first two studies provide essential tools to model textual representations as compositions of both surface forms (lexical units) and high level concepts with potential downstream use in QA. In the third effort, we present a document reranking model that can help surface documents that are likely to contain answers (e.g, factoids, lists) to a question in a QA task. The model is essentially a sentence matching neural network that learns the relevance of a candidate answer sentence to the given question parametrized with a bilinear map. In the fourth effort, we present another document reranking approach that is tailored for precision medicine use-cases. It combines neural query-document matching and faceted text summarization. The main distinction of this effort from previous efforts is to pivot from a query manipulation setup to transforming candidate documents into pseudo-queries via neural text summarization. Overall, our contributions constitute nontrivial advances in biomedical IR using neural representations of concepts and texts
    corecore