1,216 research outputs found

    Correcting curvature-density effects in the Hamilton-Jacobi skeleton

    Get PDF
    The Hainilton-Jacobi approach has proven to be a powerful and elegant method for extracting the skeleton of two-dimensional (2-D) shapes. The approach is based on the observation that the normalized flux associated with the inward evolution of the object boundary at nonskeletal points tends to zero as the size of the integration area tends to zero, while the flux is negative at the locations of skeletal points. Nonetheless, the error in calculating the flux on the image lattice is both limited by the pixel resolution and also proportional to the curvature of the boundary evolution front and, hence, unbounded near endpoints. This makes the exact location of endpoints difficult and renders the performance of the skeleton extraction algorithm dependent on a threshold parameter. This problem can be overcome by using interpolation techniques to calculate the flux with subpixel precision. However, here, we develop a method for 2-D skeleton extraction that circumvents the problem by eliminating the curvature contribution to the error. This is done by taking into account variations of density due to boundary curvature. This yields a skeletonization algorithm that gives both better localization and less susceptibility to boundary noise and parameter choice than the Hamilton-Jacobi method

    Electromagnetic field theory without divergence problems: 1. The Born Legacy

    Full text link
    A fully consistent classical relativistic electrodynamics with spinless point charges is constructed. The classical evolution of the electromagnetic fields is governed by the nonlinear Maxwell--Born--Infeld field equations, the classical evolution of the point charges by a many-body Hamilton--Jacobi law of motion. The Pauli principle for bosons can be incorporated in the classical Hamilton--Jacobi formalism. The Cauchy problem is explained and illustrated with examples. The question of charge-free field solitons is addressed also and it is shown that if they exist, their peak field strengths must be enormous. The value The value of Born's constant is shown to be a subtle open issue.Comment: Minor corrections at galley stage incorporated. 66p; to appear in JSP vol. 116, issue dedicated to Elliott H. Lieb on his 70th birthday. Part II is math-ph/031103

    Semidefinite Relaxations for Stochastic Optimal Control Policies

    Full text link
    Recent results in the study of the Hamilton Jacobi Bellman (HJB) equation have led to the discovery of a formulation of the value function as a linear Partial Differential Equation (PDE) for stochastic nonlinear systems with a mild constraint on their disturbances. This has yielded promising directions for research in the planning and control of nonlinear systems. This work proposes a new method obtaining approximate solutions to these linear stochastic optimal control (SOC) problems. A candidate polynomial with variable coefficients is proposed as the solution to the SOC problem. A Sum of Squares (SOS) relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function.Comment: Preprint. Accepted to American Controls Conference (ACC) 2014 in Portland, Oregon. 7 pages, colo

    Semiclassical Theory and the Koopman-van Hove Equation

    Full text link
    The phase space Koopman-van Hove (KvH) equation can be derived from the asymptotic semiclassical analysis of partial differential equations. Semiclassical theory yields the Hamilton-Jacobi equation for the complex phase factor and the transport equation for the amplitude. These two equations can be combined to form a nonlinear semiclassical version of the KvH equation in configuration space. Every solution of the configuration space KvH equation satisfies both the semiclassical phase space KvH equation and the Hamilton-Jacobi constraint. For configuration space solutions, this constraint resolves the paradox that there are two different conserved densities in phase space. For integrable systems, the KvH spectrum is the Cartesian product of a classical and a semiclassical spectrum. If the classical spectrum is eliminated, then, with the correct choice of Jeffreys-Wentzel-Kramers-Brillouin (JWKB) matching conditions, the semiclassical spectrum satisfies the Einstein-Brillouin-Keller quantization conditions which include the correction due to the Maslov index. However, semiclassical analysis uses different choices for boundary conditions, continuity requirements, and the domain of definition. For example, use of the complex JWKB method allows for the treatment of tunneling through the complexification of phase space. Finally, although KvH wavefunctions include the possibility of interference effects, interference is not observable when all observables are approximated as local operators on phase space. Observing interference effects requires consideration of nonlocal operations, e.g. through higher orders in the asymptotic theory.Comment: 49 pages, 10 figure

    Particle dynamics inside shocks in Hamilton-Jacobi equations

    Full text link
    Characteristics of a Hamilton-Jacobi equation can be seen as action minimizing trajectories of fluid particles. For nonsmooth "viscosity" solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that for any convex Hamiltonian there exists a uniquely defined canonical global nonsmooth coalescing flow that extends particle trajectories and determines dynamics inside the shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss relation to the "dissipative anomaly" in the limit of vanishing viscosity.Comment: 15 pages, no figures; to appear in Philos. Trans. R. Soc. series

    Involutive constrained systems and Hamilton-Jacobi formalism

    Full text link
    In this paper, we study singular systems with complete sets of involutive constraints. The aim is to establish, within the Hamilton-Jacobi theory, the relationship between the Frobenius' theorem, the infinitesimal canonical transformations generated by constraints in involution with the Poisson brackets, and the lagrangian point (gauge) transformations of physical systems
    • …
    corecore