177 research outputs found

    Higher-Order Tarski Grothendieck as a Foundation for Formal Proof

    Get PDF
    We formally introduce a foundation for computer verified proofs based on higher-order Tarski-Grothendieck set theory. We show that this theory has a model if a 2-inaccessible cardinal exists. This assumption is the same as the one needed for a model of plain Tarski-Grothendieck set theory. The foundation allows the co-existence of proofs based on two major competing foundations for formal proofs: higher-order logic and TG set theory. We align two co-existing Isabelle libraries, Isabelle/HOL and Isabelle/Mizar, in a single foundation in the Isabelle logical framework. We do this by defining isomorphisms between the basic concepts, including integers, functions, lists, and algebraic structures that preserve the important operations. With this we can transfer theorems proved in higher-order logic to TG set theory and vice versa. We practically show this by formally transferring Lagrange\u27s four-square theorem, Fermat 3-4, and other theorems between the foundations in the Isabelle framework

    A Tale of Two Set Theories

    Full text link
    We describe the relationship between two versions of Tarski-Grothendieck set theory: the first-order set theory of Mizar and the higher-order set theory of Egal. We show how certain higher-order terms and propositions in Egal have equivalent first-order presentations. We then prove Tarski's Axiom A (an axiom in Mizar) in Egal and construct a Grothendieck Universe operator (a primitive with axioms in Egal) in Mizar

    On Constructive Axiomatic Method

    Get PDF
    In this last version of the paper one may find a critical overview of some recent philosophical literature on Axiomatic Method and Genetic Method.Comment: 25 pages, no figure

    A Foundational View on Integration Problems

    Full text link
    The integration of reasoning and computation services across system and language boundaries is a challenging problem of computer science. In this paper, we use integration for the scenario where we have two systems that we integrate by moving problems and solutions between them. While this scenario is often approached from an engineering perspective, we take a foundational view. Based on the generic declarative language MMT, we develop a theoretical framework for system integration using theories and partial theory morphisms. Because MMT permits representations of the meta-logical foundations themselves, this includes integration across logics. We discuss safe and unsafe integration schemes and devise a general form of safe integration

    An Introduction to Mechanized Reasoning

    Get PDF
    Mechanized reasoning uses computers to verify proofs and to help discover new theorems. Computer scientists have applied mechanized reasoning to economic problems but -- to date -- this work has not yet been properly presented in economics journals. We introduce mechanized reasoning to economists in three ways. First, we introduce mechanized reasoning in general, describing both the techniques and their successful applications. Second, we explain how mechanized reasoning has been applied to economic problems, concentrating on the two domains that have attracted the most attention: social choice theory and auction theory. Finally, we present a detailed example of mechanized reasoning in practice by means of a proof of Vickrey's familiar theorem on second-price auctions

    Deductive Pluralism

    Get PDF
    This paper proposes an approach to the philosophy of mathematics, deductive pluralism, that is designed to satisfy the criteria of inclusiveness of and consistency with mathematical practice. Deductive pluralism views mathematical statements as assertions that a result follows from logical and mathematical foundations and that there are a variety of incompatible foundations such as standard foundations, constructive foundations, or univalent foundations. The advantages of this philosophy include the elimination of ontological problems, epistemological clarity, and objectivity. Possible objections and relations with some other philosophies of mathematics are also considered

    Axiomatic Architecture of Scientific Theories

    Get PDF
    The received concepts of axiomatic theory and axiomatic method, which stem from David Hilbert, need a systematic revision in view of more recent mathematical and scientific axiomatic practices, which do not fully follow in Hilbert’s steps and re-establish some older historical patterns of axiomatic thinking in unexpected new forms. In this work I motivate, formulate and justify such a revised concept of axiomatic theory, which for a variety of reasons I call constructive, and then argue that it can better serve as a formal representational tool in mathematics and science than the received concept

    LISA - A Modern Proof System

    Get PDF
    corecore