612 research outputs found

    On tiered small jump operators

    Full text link
    Predicative analysis of recursion schema is a method to characterize complexity classes like the class FPTIME of polynomial time computable functions. This analysis comes from the works of Bellantoni and Cook, and Leivant by data tiering. Here, we refine predicative analysis by using a ramified Ackermann's construction of a non-primitive recursive function. We obtain a hierarchy of functions which characterizes exactly functions, which are computed in O(n^k) time over register machine model of computation. For this, we introduce a strict ramification principle. Then, we show how to diagonalize in order to obtain an exponential function and to jump outside deterministic polynomial time. Lastly, we suggest a dependent typed lambda-calculus to represent this construction

    A generalized topological recursion for arbitrary ramification

    Full text link
    The Eynard-Orantin topological recursion relies on the geometry of a Riemann surface S and two meromorphic functions x and y on S. To formulate the recursion, one must assume that x has only simple ramification points. In this paper we propose a generalized topological recursion that is valid for x with arbitrary ramification. We justify our proposal by studying degenerations of Riemann surfaces. We check in various examples that our generalized recursion is compatible with invariance of the free energies under the transformation (x,y) -> (y,x), where either x or y (or both) have higher order ramification, and that it satisfies some of the most important properties of the original recursion. Along the way, we show that invariance under (x,y) -> (y,x) is in fact more subtle than expected; we show that there exists a number of counter examples, already in the case of the original Eynard-Orantin recursion, that deserve further study.Comment: 26 pages, 2 figure

    Recursion relations for Double Ramification Hierarchies

    Get PDF
    In this paper we study various properties of the double ramification hierarchy, an integrable hierarchy of hamiltonian PDEs introduced in [Bur15] using intersection theory of the double ramification cycle in the moduli space of stable curves. In particular, we prove a recursion formula that recovers the full hierarchy starting from just one of the Hamiltonians, the one associated to the first descendant of the unit of a cohomological field theory. Moreover, we introduce analogues of the topological recursion relations and the divisor equation both for the hamiltonian densities and for the string solution of the double ramification hierarchy. This machinery is very efficient and we apply it to various computations for the trivial and Hodge cohomological field theories, and for the rr-spin Witten's classes. Moreover we prove the Miura equivalence between the double ramification hierarchy and the Dubrovin-Zhang hierarchy for the Gromov-Witten theory of the complex projective line (extended Toda hierarchy).Comment: Revised version, to be published in Communications in Mathematical Physics, 27 page

    Quantum curves for Hitchin fibrations and the Eynard-Orantin theory

    Get PDF
    We generalize the topological recursion of Eynard-Orantin (2007) to the family of spectral curves of Hitchin fibrations. A spectral curve in the topological recursion, which is defined to be a complex plane curve, is replaced with a generic curve in the cotangent bundle TCT^*C of an arbitrary smooth base curve CC. We then prove that these spectral curves are quantizable, using the new formalism. More precisely, we construct the canonical generators of the formal \hbar-deformation family of DD-modules over an arbitrary projective algebraic curve CC of genus greater than 11, from the geometry of a prescribed family of smooth Hitchin spectral curves associated with the SL(2,C)SL(2,\mathbb{C})-character variety of the fundamental group π1(C)\pi_1(C). We show that the semi-classical limit through the WKB approximation of these \hbar-deformed DD-modules recovers the initial family of Hitchin spectral curves.Comment: 34 page

    Double Ramification Cycles and Quantum Integrable Systems

    Get PDF
    In this paper we define a quantization of the Double Ramification Hierarchies of [Bur15b] and [BR14], using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)(1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, Extended Toda, etc. Finally we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.Comment: Revised version, to be published in Letters in Mathematical Physics, 21 page

    Integrability, quantization and moduli spaces of curves

    Get PDF
    This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Gu\'er\'e

    All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials

    No full text
    corecore