6,127 research outputs found

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient

    Integrable viscous conservation laws

    Get PDF
    We propose an extension of the Dubrovin-Zhang perturbative approach to the study of normal forms for non-Hamiltonian integrable scalar conservation laws. The explicit computation of the first few corrections leads to the conjecture that such normal forms are parameterized by one single functional parameter, named viscous central invariant. A constant valued viscous central invariant corresponds to the well-known Burgers hierarchy. The case of a linear viscous central invariant provides a viscous analog of the Camassa-Holm equation, that formerly appeared as a reduction of a two-component Hamiltonian integrable systems. We write explicitly the negative and positive hierarchy associated with this equation and prove the integrability showing that they can be mapped respectively into the heat hierarchy and its negative counterpart, named the Klein-Gordon hierarchy. A local well-posedness theorem for periodic initial data is also proven. We show how transport equations can be used to effectively construct asymptotic solutions via an extension of the quasi-Miura map that preserves the initial datum. The method is alternative to the method of the string equation for Hamiltonian conservation laws and naturally extends to the viscous case. Using these tools we derive the viscous analog of the Painlevé I2 equation that describes the universal behaviour of the solution at the critical point of gradient catastrophe

    Seven common errors in finding exact solutions of nonlinear differential equations

    Full text link
    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We show that many popular methods in finding of the exact solutions are equivalent each other. We demonstrate that some authors look for the solitary wave solutions of nonlinear ordinary differential equations and do not take into account the well - known general solutions of these equations. We illustrate several cases when authors present some functions for describing solutions but do not use arbitrary constants. As this fact takes place the redundant solutions of differential equations are found. A few examples of incorrect solutions by some authors are presented. Several other errors in finding the exact solutions of nonlinear differential equations are also discussed.Comment: 42 page

    On the decay of Burgers turbulence

    Get PDF
    This work is devoted to the decay ofrandom solutions of the unforced Burgers equation in one dimension in the limit of vanishing viscosity. The initial velocity is homogeneous and Gaussian with a spectrum proportional to knk^n at small wavenumbers kk and falling off quickly at large wavenumbers. In physical space, at sufficiently large distances, there is an ``outer region'', where the velocity correlation function preserves exactly its initial form (a power law) when nn is not an even integer. When 1<n<21<n<2 the spectrum, at long times, has three scaling regions : first, a ∣k∣n|k|^n region at very small kk\ms1 with a time-independent constant, stemming from this outer region, in which the initial conditions are essentially frozen; second, a k2k^2 region at intermediate wavenumbers, related to a self-similarly evolving ``inner region'' in physical space and, finally, the usual k−2k^{-2} region, associated to the shocks. The switching from the ∣k∣n|k|^n to the k2k^2 region occurs around a wave number ks(t)∝t−1/[2(2−n)]k_s(t) \propto t^{-1/[2(2-n)]}, while the switching from k2k^2 to k−2k^{-2} occurs around kL(t)∝t−1/2k_L(t)\propto t^{-1/2} (ignoring logarithmic corrections in both instances). The key element in the derivation of the results is an extension of the Kida (1979) log-corrected 1/t1/t law for the energy decay when n=2n=2 to the case of arbitrary integer or non-integer n>1n>1. A systematic derivation is given in which both the leading term and estimates of higher order corrections can be obtained. High-resolution numerical simulations are presented which support our findings.Comment: In LaTeX with 11 PostScript figures. 56 pages. One figure contributed by Alain Noullez (Observatoire de Nice, France

    Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations

    Full text link
    We sharpen in this work the tools of paracontrolled calculus in order to provide a complete analysis of the parabolic Anderson model equation and Burgers system with multiplicative noise, in a 33-dimensional Riemannian setting, in either bounded or unbounded domains. With that aim in mind, we introduce a pair of intertwined space-time paraproducts on parabolic H\"older spaces, with good continuity, that happens to be pivotal and provides one of the building blocks of higher order paracontrolled calculus.Comment: v3, 56 pages. Different points about renormalisation matters have been clarified. Typos correcte
    • 

    corecore