241 research outputs found

    Operator Regular Variation of Multivariate Liouville Distributions

    Full text link
    Operator regular variation reveals general power-law distribution tail decay phenomena using operator scaling, that includes multivariate regular variation with scalar scaling as a special case. In this paper, we show that a multivariate Liouville distribution is operator regularly varying if its driving function is univariate regularly varying. Our method focuses on operator regular variation of multivariate densities, which implies, as we also show in this paper, operator regular variation of the multivariate distributions. This general result extends the general closure property of multivariate regular variation established by de Haan and Resnick in 1987

    Neural Likelihoods via Cumulative Distribution Functions

    Get PDF
    We leverage neural networks as universal approximators of monotonic functions to build a parameterization of conditional cumulative distribution functions (CDFs). By the application of automatic differentiation with respect to response variables and then to parameters of this CDF representation, we are able to build black box CDF and density estimators. A suite of families is introduced as alternative constructions for the multivariate case. At one extreme, the simplest construction is a competitive density estimator against state-of-the-art deep learning methods, although it does not provide an easily computable representation of multivariate CDFs. At the other extreme, we have a flexible construction from which multivariate CDF evaluations and marginalizations can be obtained by a simple forward pass in a deep neural net, but where the computation of the likelihood scales exponentially with dimensionality. Alternatives in between the extremes are discussed. We evaluate the different representations empirically on a variety of tasks involving tail area probabilities, tail dependence and (partial) density estimation.Comment: 10 page

    Modelling multivariate extremes through angular-radial decomposition of the density function

    Full text link
    We present a new framework for modelling multivariate extremes, based on an angular-radial representation of the probability density function. Under this representation, the problem of modelling multivariate extremes is transformed to that of modelling an angular density and the tail of the radial variable, conditional on angle. Motivated by univariate theory, we assume that the tail of the conditional radial distribution converges to a generalised Pareto (GP) distribution. To simplify inference, we also assume that the angular density is continuous and finite and the GP parameter functions are continuous with angle. We refer to the resulting model as the semi-parametric angular-radial (SPAR) model for multivariate extremes. We consider the effect of the choice of polar coordinate system and introduce generalised concepts of angular-radial coordinate systems and generalised scalar angles in two dimensions. We show that under certain conditions, the choice of polar coordinate system does not affect the validity of the SPAR assumptions. However, some choices of coordinate system lead to simpler representations. In contrast, we show that the choice of margin does affect whether the model assumptions are satisfied. In particular, the use of Laplace margins results in a form of the density function for which the SPAR assumptions are satisfied for many common families of copula, with various dependence classes. We show that the SPAR model provides a more versatile framework for characterising multivariate extremes than provided by existing approaches, and that several commonly-used approaches are special cases of the SPAR model. Moreover, the SPAR framework provides a means of characterising all `extreme regions' of a joint distribution using a single inference. Applications in which this is useful are discussed

    Quantile Coherency: A General Measure for Dependence between Cyclical Economic Variables

    Get PDF
    In this paper, we introduce quantile coherency to measure general dependence structures emerging in the joint distribution in the frequency domain and argue that this type of dependence is natural for economic time series but remains invisible when only the traditional analysis is employed. We define estimators which capture the general dependence structure, provide a detailed analysis of their asymptotic properties and discuss how to conduct inference for a general class of possibly nonlinear processes. In an empirical illustration we examine the dependence of bivariate stock market returns and shed new light on measurement of tail risk in financial markets. We also provide a modelling exercise to illustrate how applied researchers can benefit from using quantile coherency when assessing time series models.Comment: paper (49 pages) and online supplement (31 pages), R codes to replicate the figures in the paper are available at https://github.com/tobiaskley/quantile_coherency_replicatio
    • …
    corecore