472 research outputs found

    Sliding Mode Based Dynamic State Estimation for Synchronous Generators in Power Systems

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record This letter deals with the design of a robust sliding mode observer for dynamic state estimation applied to synchronous generators in power systems. Assuming only the frequency deviation of the generator is measured via phasor measurement units, we use a robust sliding mode estimation technique to dynamically reconstruct the rotor angle and the transient voltage. The adopted estimation technique is insensitive to matched bounded uncertainties affecting the dynamics of the synchronous generator. A stability analysis and tuning rules for the observer are also provided. Numerical simulations confirm the validity of the approach

    Tracking Control of Quadrotors

    Get PDF
    In this thesis, the tracking control problem of a 6 DOF quadrotor is considered, and different control method is proposed considering optimal control, parametric and nonparametric uncertainty, input saturation, and distributed formation control. An optimal control approach is developed for single quadrotor tracking by minimizing the cost function. For uncertainties of the dynamic system, a robust adaptive tracking controller is proposed with the special structure of the dynamics of the system. Considering the uncertainty and input constraints, a robust adaptive saturation controller is proposed with the aid of an auxiliary compensated system. Decentralized formation control method for quadrotors is presented using a leader-follower scheme using proposed optimal control method. Virtual leader is employed to drive the quadrotors to their desired formation and ultimately track the trajectory defined by the virtual leader. Sliding mode estimators have been implemented to estimate the states of the virtual leader. The control method is designed considering switching communication topologies among the quadrotors. Simulation results are provided to show the effectiveness of the proposed approaches

    Coordination of multi-agent systems: stability via nonlinear Perron-Frobenius theory and consensus for desynchronization and dynamic estimation.

    Get PDF
    This thesis addresses a variety of problems that arise in the study of complex networks composed by multiple interacting agents, usually called multi-agent systems (MASs). Each agent is modeled as a dynamical system whose dynamics is fully described by a state-space representation. In the first part the focus is on the application to MASs of recent results that deal with the extensions of Perron-Frobenius theory to nonlinear maps. In the shift from the linear to the nonlinear framework, Perron-Frobenius theory considers maps being order-preserving instead of matrices being nonnegative. The main contribution is threefold. First of all, a convergence analysis of the iterative behavior of two novel classes of order-preserving nonlinear maps is carried out, thus establishing sufficient conditions which guarantee convergence toward a fixed point of the map: nonnegative row-stochastic matrices turns out to be a special case. Secondly, these results are applied to MASs, both in discrete and continuous-time: local properties of the agents' dynamics have been identified so that the global interconnected system falls into one of the above mentioned classes, thus guaranteeing its global stability. Lastly, a sufficient condition on the connectivity of the communication network is provided to restrict the set of equilibrium points of the system to the consensus points, thus ensuring the agents to achieve consensus. These results do not rely on standard tools (e.g., Lyapunov theory) and thus they constitute a novel approach to the analysis and control of multi-agent dynamical systems. In the second part the focus is on the design of dynamic estimation algorithms in large networks which enable to solve specific problems. The first problem consists in breaking synchronization in networks of diffusively coupled harmonic oscillators. The design of a local state feedback that achieves desynchronization in connected networks with arbitrary undirected interactions is provided. The proposed control law is obtained via a novel protocol for the distributed estimation of the Fiedler vector of the Laplacian matrix. The second problem consists in the estimation of the number of active agents in networks wherein agents are allowed to join or leave. The adopted strategy consists in the distributed and dynamic estimation of the maximum among numbers locally generated by the active agents and the subsequent inference of the number of the agents that took part in the experiment. Two protocols are proposed and characterized to solve the consensus problem on the time-varying max value. The third problem consists in the average state estimation of a large network of agents where only a few agents' states are accessible to a centralized observer. The proposed strategy projects the dynamics of the original system into a lower dimensional state space, which is useful when dealing with large-scale systems. Necessary and sufficient conditions for the existence of a linear and a sliding mode observers are derived, along with a characterization of their design and convergence properties

    Decentralised control for complex systems - An invited survey

    Get PDF
    © 2014 Inderscience Enterprises Ltd. With the advancement of science and technology, practical systems are becoming more complex. Decentralised control has been recognised as a practical, feasible and powerful tool for application to large scale interconnected systems. In this paper, past and recent results relating to decentralised control of complex large scale interconnected systems are reviewed. Decentralised control based on modern control approaches such as variable structure techniques, adaptive control and backstepping approaches are discussed. It is well known that system structure can be employed to reduce conservatism in the control design and decentralised control for interconnected systems with similar and symmetric structure is explored. Decentralised control of singular large scale systems is also reviewed in this paper

    Distributed estimation techniques forcyber-physical systems

    Get PDF
    Nowadays, with the increasing use of wireless networks, embedded devices and agents with processing and sensing capabilities, the development of distributed estimation techniques has become vital to monitor important variables of the system that are not directly available. Numerous distributed estimation techniques have been proposed in the literature according to the model of the system, noises and disturbances. One of the main objectives of this thesis is to search all those works that deal with distributed estimation techniques applied to cyber-physical systems, system of systems and heterogeneous systems, through using systematic review methodology. Even though systematic reviews are not the common way to survey a topic in the control community, they provide a rigorous, robust and objective formula that should not be ignored. The presented systematic review incorporates and adapts the guidelines recommended in other disciplines to the field of automation and control and presents a brief description of the different phases that constitute a systematic review. Undertaking the systematic review many gaps were discovered: it deserves to be remarked that some estimators are not applied to cyber-physical systems, such as sliding mode observers or set-membership observers. Subsequently, one of these particular techniques was chosen, set-membership estimator, to develop new applications for cyber-physical systems. This introduces the other objectives of the thesis, i.e. to present two novel formulations of distributed set-membership estimators. Both estimators use a multi-hop decomposition, so the dynamics of the system is rewritten to present a cascaded implementation of the distributed set-membership observer, decoupling the influence of the non-observable modes to the observable ones. So each agent must find a different set for each sub-space, instead of a unique set for all the states. Two different approaches have been used to address the same problem, that is, to design a guaranteed distributed estimation method for linear full-coupled systems affected by bounded disturbances, to be implemented in a set of distributed agents that need to communicate and collaborate to achieve this goal

    Advances and Trends in Mathematical Modelling, Control and Identification of Vibrating Systems

    Get PDF
    This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation

    Proceedings of the 1st Virtual Control Conference VCC 2010

    Get PDF
    • …
    corecore