122 research outputs found

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    Index

    Get PDF

    Integrability and conformal data of the dimer model

    Full text link
    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=2c=-2 description. Using Lieb's transfer matrix and its description in terms of the Temperley-Lieb algebra TLnTL_n at β=0\beta = 0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analysed in the scaling limit and the result for L0c24L_0-\frac c{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of TLnTL_n and are found to yield a c=2c=-2 realisation of the Virasoro algebra, familiar from fermionic bcbc ghost systems. In this realisation, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=2c=-2 conformal integrals of motion. Consistent with the expression for L0c24L_0-\frac c{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c=1c=1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c=1c=1 integrals of motion. Although this indicates that Lieb's transfer matrix description is incompatible with the c=1c=1 interpretation, it does not rule out the existence of an alternative, c=1c=1 compatible, transfer matrix description of the dimer model.Comment: 54 pages. v2: minor correction

    Spanning Trees and Spanning Eulerian Subgraphs with Small Degrees. II

    Full text link
    Let GG be a connected graph with XV(G)X\subseteq V(G) and with the spanning forest FF. Let λ[0,1]\lambda\in [0,1] be a real number and let η:X(λ,)\eta:X\rightarrow (\lambda,\infty) be a real function. In this paper, we show that if for all SXS\subseteq X, ω(GS)vS(η(v)2)+2λ(eG(S)+1)\omega(G\setminus S)\le\sum_{v\in S}\big(\eta(v)-2\big)+2-\lambda(e_G(S)+1), then GG has a spanning tree TT containing FF such that for each vertex vXv\in X, dT(v)η(v)λ+max{0,dF(v)1}d_T(v)\le \lceil\eta(v)-\lambda\rceil+\max\{0,d_F(v)-1\}, where ω(GS)\omega(G\setminus S) denotes the number of components of GSG\setminus S and eG(S)e_G(S) denotes the number of edges of GG with both ends in SS. This is an improvement of several results and the condition is best possible. Next, we also investigate an extension for this result and deduce that every kk-edge-connected graph GG has a spanning subgraph HH containing mm edge-disjoint spanning trees such that for each vertex vv, dH(v)mk(dG(v)2m)+2md_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-2m)\big\rceil+2m, where k2mk\ge 2m; also if GG contains kk edge-disjoint spanning trees, then HH can be found such that for each vertex vv, dH(v)mk(dG(v)m)+md_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-m)\big\rceil+m, where kmk\ge m. Finally, we show that strongly 22-tough graphs, including (3+1/2)(3+1/2)-tough graphs of order at least three, have spanning Eulerian subgraphs whose degrees lie in the set {2,4}\{2,4\}. In addition, we show that every 11-tough graph has spanning closed walk meeting each vertex at most 22 times and prove a long-standing conjecture due to Jackson and Wormald (1990).Comment: 46 pages, Keywords: Spanning tree; spanning Eulerian; spanning closed walk; connected factor; toughness; total exces

    Contractions, Removals and How to Certify 3-Connectivity in Linear Time

    Get PDF
    It is well-known as an existence result that every 3-connected graph G=(V,E) on more than 4 vertices admits a sequence of contractions and a sequence of removal operations to K_4 such that every intermediate graph is 3-connected. We show that both sequences can be computed in optimal time, improving the previously best known running times of O(|V|^2) to O(|V|+|E|). This settles also the open question of finding a linear time 3-connectivity test that is certifying and extends to a certifying 3-edge-connectivity test in the same time. The certificates used are easy to verify in time O(|E|).Comment: preliminary versio

    Stochastic Analysis: Geometry of Random Processes

    Get PDF
    A common feature shared by many natural objects arising in probability theory is that they tend to be very “rough”, as opposed to the “smooth” objects usually studied in other branches of mathematics. It is however still desirable to understand their geometric properties, be it from a metric, a topological, or a measure-theoretic perspective. In recent years, our understanding of such “random geometries” has seen spectacular advances on a number of fronts

    The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective

    Full text link
    Among various algorithms designed to exploit the specific properties of quantum computers with respect to classical ones, the quantum adiabatic algorithm is a versatile proposition to find the minimal value of an arbitrary cost function (ground state energy). Random optimization problems provide a natural testbed to compare its efficiency with that of classical algorithms. These problems correspond to mean field spin glasses that have been extensively studied in the classical case. This paper reviews recent analytical works that extended these studies to incorporate the effect of quantum fluctuations, and presents also some original results in this direction.Comment: 151 pages, 21 figure

    Resilient scalable internet routing and embedding algorithms

    Get PDF
    corecore