3,526 research outputs found

    A strategy to suppress recurrence in grid-based Vlasov solvers

    Full text link
    In this paper we propose a strategy to suppress the recurrence effect present in grid-based Vlasov solvers. This method is formulated by introducing a cutoff frequency in Fourier space. Since this cutoff only has to be performed after a number of time steps, the scheme can be implemented efficiently and can relatively easily be incorporated into existing Vlasov solvers. Furthermore, the scheme proposed retains the advantage of grid-based methods in that high accuracy can be achieved. This is due to the fact that in contrast to the scheme proposed by Abbasi et al. no statistical noise is introduced into the simulation. We will illustrate the utility of the method proposed by performing a number of numerical simulations, including the plasma echo phenomenon, using a discontinuous Galerkin approximation in space and a Strang splitting based time integration

    Vlasov simulation of laser-driven shock acceleration and ion turbulence

    Full text link
    We present a Vlasov, i.e. a kinetic Eulerian simulation study of nonlinear collisionless ion-acoustic shocks and solitons excited by an intense laser interacting with an overdense plasma. The use of the Vlasov code avoids problems with low particle statistics and allows a validation of particle-in-cell results. A simple original correction to the splitting method for the numerical integration of the Vlasov equation has been implemented in order to ensure the charge conservation in the relativistic regime. We show that the ion distribution is affected by the development of a turbulence driven by the relativistic "fast" electron bunches generated at the laser-plasma interaction surface. This leads to the onset of ion reflection at the shock front in an initially cold plasma where only soliton solutions without ion reflection are expected to propagate. We give a simple analytic model to describe the onset of the turbulence as a nonlinear coupling of the ion density with the fast electron currents, taking the pulsed nature of the relativistic electron bunches into account
    corecore