111 research outputs found

    Uncertainty and disturbance estimator design to shape and reduce the output impedance of inverter

    Get PDF
    Power inverters are becoming more and more common in the modern grid. Due to their switching nature, a passive filter is installed at the inverter output. This generates high output impedance which limits the inverter ability to maintain high power quality at the inverter output. This thesis deals with an impedance shaping approach to the design of power inverter control. The Uncertainty and Disturbance Estimator (UDE) is proposed as a candidate for direct formation of the inverter output impedance. The selection of UDE is motivated by the desire for the disturbance rejection control and the tracking controller to be decoupled. It is demonstrated in the thesis that due to this fact the UDE filter design directly influences the inverter output impedance and the reference model determines the inverter internal electromotive force. It was recently shown in the literature and further emphasized in this thesis that the classic low pass frequency design of the UDE cannot estimate periodical disturbances under the constraint of finite control bandwidth. Since for a power inverter both the reference signal and the disturbance signal are of periodical nature, the classic UDE lowpass filter design does not give optimal results. A new design approach is therefore needed. The thesis develops four novel designs of the UDE filter to significantly reduce the inverter output impedance and maintain low Total Harmonic Distortion (THD) of the inverter output voltage. The first design is the based on a frequency selective filter. This filter design shows superiority in both observing and rejecting periodical disturbances over the classic low pass filter design. The second design uses a multi-band stop design to reject periodical disturbances with some uncertainty in the frequency. The third solution uses a classic low pass filter design combined with a time delay to match zero phase estimation of the disturbance at the relevant spectrum. Furthermore, this solution is combined with a resonant tracking controller to reduce the tracking steady-state error in the output voltage. The fourth solution utilizes a low-pass filter combined with multiple delays to increase the frequency robustness. This method shows superior performance over the multi-band-stop and the time delayed filter in steady-state. All the proposed methods are validated through extensive simulation and experimental results

    Control and observer design for non-smooth systems

    Get PDF

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation

    Energy Based Control System Designs for Underactuated Robot Fish Propulsion

    Get PDF
    In nature through millions of years of evolution fish and cetaceans have developed fast efficient and highly manoeuvrable methods of marine propulsion. A recent explosion in demand for sub sea robotics, for conducting tasks such as sub sea exploration and survey has left developers desiring to capture some of the novel mechanisms evolved by fish and cetaceans to increase the efficiency of speed and manoeuvrability of sub sea robots. Research has revealed that interactions with vortices and other unsteady fluid effects play a significant role in the efficiency of fish and cetaceans. However attempts to duplicate this with robotic fish have been limited by the difficulty of predicting or sensing such uncertain fluid effects. This study aims to develop a gait generation method for a robotic fish with a degree of passivity which could allow the body to dynamically interact with and potentially synchronise with vortices within the flow without the need to actually sense them. In this study this is achieved through the development of a novel energy based gait generation tactic, where the gait of the robotic fish is determined through regulation of the state energy rather than absolute state position. Rather than treating fluid interactions as undesirable disturbances and `fighting' them to maintain a rigid geometric defined gait, energy based control allows the disturbances to the system generated by vortices in the surrounding flow to contribute to the energy of the system and hence the dynamic motion. Three different energy controllers are presented within this thesis, a deadbeat energy controller equivalent to an analytically optimised model predictive controller, a HH_\infty disturbance rejecting controller with a novel gradient decent optimisation and finally a error feedback controller with a novel alternative error metric. The controllers were tested on a robotic fish simulation platform developed within this project. The simulation platform consisted of the solution of a series of ordinary differential equations for solid body dynamics coupled with a finite element incompressible fluid dynamic simulation of the surrounding flow. results demonstrated the effectiveness of the energy based control approach and illustrate the importance of choice of controller in performance

    Identification and Optimal Linear Tracking Control of ODU Autonomous Surface Vehicle

    Get PDF
    Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion. A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV

    Optimization and analysis of the current control loop of VSCs connected to uncertain grids through LCL filters

    Get PDF
    Premio Extraordinario de Doctorado 2011This thesis focuses on the design and analysis of the control of voltage source converters connected to the grid through LCL filters. Particularly it is centered on grids presenting uncertainty in their intrinsic dynamic parameters and their influence over the inner control loop of a grid converter: the current control. To that end, the thesis follows a three-fold discussion. Firstly, the thesis studies the grid model, its uncertain parameters and presents a proposal to recursively estimate them. The estimation is based on a recursive least-squares optimization procedure applied to the current and voltage measurements, performed in the point of common coupling, expressed in a synchronous reference frame. The synchronization and the reference frame transformation process is specially designed for the proposed system. The optimization process is complemented with an estimation evaluation block that gives a real-time measure of the estimation quality. The influence of those uncertain parameters over the stability of the current control loop of grid converters is the second topic of this thesis. For the case of linear controllers, the analysis is performed by applying the structured singular value mu theory to a parametric uncertainty model that is described in the document. The proposed method extracts safe grid parameters ranges from a previously defined controller and plant model. Special attention is payed to important practical considerations as pure real uncertainty and sampled-data systems analysis. To test the method performance and illustrate its behavior, this dissertation discusses the robustness of three particular examples: a SISO control approach, a MIMO servo-controller approach and a robust H_inf design. For the case of non-linear controllers, the thesis focuses on hysteresis controllers and presents some practical conclusions. After that analysis, the thesis deals with the complementary problem: the design of a robust controller for grid converters connected through LCL filters to grids whose parameters range between known values. As a prior stage, the thesis presents an LQ servo-controller design procedure that may be complemented with the use of state estimators. The control is faced in a synchronous reference frame and directly controls the grid injected current. Once the framework is settled, the thesis proposes a design technique based on a robust Loop-shaping H_inf design procedure complemented with the nu-gap analysis tool. The final part of this dissertation describes the experimental set-up used for testing the presented proposals. After this, a summary of experimental results and waveforms is presented

    Optimal control and approximations

    Get PDF

    Distributed real-time hybrid simulation: Modeling, development and experimental validation

    Get PDF
    Real-time hybrid simulation (RTHS) has become a recognized methodology for isolating and evaluating performance of critical structural components under potentially catastrophic events such as earthquakes. Although RTHS is efficient in its utilization of equipment and space compared to traditional testing methods such as shake table testing, laboratory resources may not always be available in one location to conduct appropriate large-scale experiments. Consequently, distributed systems, capable of connecting multiple RTHS setups located at numerous geographically distributed facilities through information exchange, become essential. This dissertation focuses on the development, evaluation and validation of a new distributed RTHS (dRTHS) platform enabling integration of physical and numerical components of RTHS in geographically distributed locations over the Internet.^ One significant challenge for conducting successful dRTHS over the Internet is sustaining real-time communication between test sites. The network is not consistent and variations in the Quality of Service (QoS) are expected. Since dRTHS is delay-sensitive by nature, a fixed transmission rate with minimum jitter and latency in the network traffic should be maintained during an experiment. A Smith predictor can compensate network delays, but requires use of a known dead time for optimal operation. The platform proposed herein is developed to mitigate the aforementioned challenge. An easily programmable environment is provided based on MATLAB/xPC. In this method, (i) a buffer is added to the simulation loop to minimize network jitter and stabilize the transmission rate, and (ii) a routine is implemented to estimate the network time delay on-the-fly for the optimal operation of the Smith predictor.^ The performance of the proposed platform is investigated through a series of numerical and experimental studies. An illustrative demonstration is conducted using a three story structure equipped with an MR damper. The structure is tested on the shake table and its global responses are compared to RTHS and dRTHS configurations where the physical MR damper and numerical structural model are tested in local and geographically distributed laboratories.^ The main contributions of this research are twofold: (1) dRTHS is validated as a feasible testing methodology, alternative to traditional and modern testing techniques such as shake table testing and RTHS, and (ii) the proposed platform serves as a viable environment for researchers to develop, evaluate and validate their own tools, investigate new methods to conduct dRTHS and advance the research in this area to the limits

    Optimal control and approximations

    Get PDF
    corecore