2,580 research outputs found

    Multivariate Modeling of Quasar Variability with an Attention-based Variational Autoencoder

    Get PDF
    This thesis applied HeTVAE, an attention-based VAE neural network capable of multivariate modeling of time series, to a dataset of several thousand multi-band AGN light curves from ZTF and was one of the first attempts to use a neural network to harness the stochastic light curves in their multivariate form. Whereas standard models of AGN variability make prior assumptions, HeTVAE uses no prior knowledge and is able to learn the data distribution in a regularized latent space, reading semantic information via its up-to-date self-supervised training regimen. We have successfully created a dataset class for preprocessing the irregular multivariate time series and in order to interface with the quasi-off-the-shelf network more conveniently. Also, we have trained several different model iterations using one, two or all three of the filter dimensions from ZTF on Durham’s NCC compute cluster, while configuring useful hyper parameter choices to work robustly for the astronomical dataset. In the network's training, we employed the Adam optimizer with a reduce-on-plateau learning rate schedule and a KL-annealing schedule optimize the VAE’s performance. In experimenting, we show how the VAE has learned the data distribution of the light curves by generating simulated light curves and its interpretability by visualizing attention scores and by visualizing the way the light curves are distributed along the continuous latent space using PCA. We show it orders the light curves across a smooth gradient from those those that have both low amplitude short-term variation and high amplitude long-term variation, to those with little variability, to those with both short-term and long-term high-amplitude variation in the condensed space. We also use PCA to display a potential filtering algorithm that enables parsing through large datasets in an intuitive way and present some of the pitfalls of algorithmic bias in anomaly detection. Finally, we fine-tuned the structurally correct but imprecise multivariate interpolations output by HeTVAE to three objects to show how they could improve constraints on time-delay estimates in the context of reverberation mapping for the relatively poor-cadenced ZTF data. In short, HeTVAE's use cases are ranged and it is a step in the right direction as far as being able to help organize and process the millions of AGN light curves incoming from Vera C. Rubin Observatory’s Legacy Survey of Space and Time in their full 6 optical broadband filter multivariate form

    Self-supervised learning for transferable representations

    Get PDF
    Machine learning has undeniably achieved remarkable advances thanks to large labelled datasets and supervised learning. However, this progress is constrained by the labour-intensive annotation process. It is not feasible to generate extensive labelled datasets for every problem we aim to address. Consequently, there has been a notable shift in recent times toward approaches that solely leverage raw data. Among these, self-supervised learning has emerged as a particularly powerful approach, offering scalability to massive datasets and showcasing considerable potential for effective knowledge transfer. This thesis investigates self-supervised representation learning with a strong focus on computer vision applications. We provide a comprehensive survey of self-supervised methods across various modalities, introducing a taxonomy that categorises them into four distinct families while also highlighting practical considerations for real-world implementation. Our focus thenceforth is on the computer vision modality, where we perform a comprehensive benchmark evaluation of state-of-the-art self supervised models against many diverse downstream transfer tasks. Our findings reveal that self-supervised models often outperform supervised learning across a spectrum of tasks, albeit with correlations weakening as tasks transition beyond classification, particularly for datasets with distribution shifts. Digging deeper, we investigate the influence of data augmentation on the transferability of contrastive learners, uncovering a trade-off between spatial and appearance-based invariances that generalise to real-world transformations. This begins to explain the differing empirical performances achieved by self-supervised learners on different downstream tasks, and it showcases the advantages of specialised representations produced with tailored augmentation. Finally, we introduce a novel self-supervised pre-training algorithm for object detection, aligning pre-training with downstream architecture and objectives, leading to reduced localisation errors and improved label efficiency. In conclusion, this thesis contributes a comprehensive understanding of self-supervised representation learning and its role in enabling effective transfer across computer vision tasks

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Revisiting the capitalization of public transport accessibility into residential land value: an empirical analysis drawing on Open Science

    Get PDF
    Background: The delivery and effective operation of public transport is fundamental for a for a transition to low-carbon emission transport systems’. However, many cities face budgetary challenges in providing and operating this type of infrastructure. Land value capture (LVC) instruments, aimed at recovering all or part of the land value uplifts triggered by actions other than the landowner, can alleviate some of this pressure. A key element of LVC lies in the increment in land value associated with a particular public action. Urban economic theory supports this idea and considers accessibility to be a core element for determining residential land value. Although the empirical literature assessing the relationship between land value increments and public transport infrastructure is vast, it often assumes homogeneous benefits and, therefore, overlooks relevant elements of accessibility. Advancements in the accessibility concept in the context of Open Science can ease the relaxation of such assumptions. Methods: This thesis draws on the case of Greater Mexico City between 2009 and 2019. It focuses on the effects of the main public transport network (MPTN) which is organised in seven temporal stages according to its expansion phases. The analysis incorporates location based accessibility measures to employment opportunities in order to assess the benefits of public transport infrastructure. It does so by making extensive use of the open-source software OpenTripPlanner for public transport route modelling (≈ 2.1 billion origin-destination routes). Potential capitalizations are assessed according to the hedonic framework. The property value data includes individual administrative mortgage records collected by the Federal Mortgage Society (≈ 800,000). The hedonic function is estimated using a variety of approaches, i.e. linear models, nonlinear models, multilevel models, and spatial multilevel models. These are estimated by the maximum likelihood and Bayesian methods. The study also examines possible spatial aggregation bias using alternative spatial aggregation schemes according to the modifiable areal unit problem (MAUP) literature. Results: The accessibility models across the various temporal stages evidence the spatial heterogeneity shaped by the MPTN in combination with land use and the individual perception of residents. This highlights the need to transition from measures that focus on the characteristics of transport infrastructure to comprehensive accessibility measures which reflect such heterogeneity. The estimated hedonic function suggests a robust, positive, and significant relationship between MPTN accessibility and residential land value in all the modelling frameworks in the presence of a variety of controls. The residential land value increases between 3.6% and 5.7% for one additional standard deviation in MPTN accessibility to employment in the final set of models. The total willingness to pay (TWTP) is considerable, ranging from 0.7 to 1.5 times the equivalent of the capital costs of the bus rapid transit Line-7 of the Metrobús system. A sensitivity analysis shows that the hedonic model estimation is sensitive to the MAUP. In addition, the use of a post code zoning scheme produces the closest results compared to the smallest spatial analytical scheme (0.5 km hexagonal grid). Conclusion: The present thesis advances the discussion on the capitalization of public transport on residential land value by adopting recent contributions from the Open Science framework. Empirically, it fills a knowledge gap given the lack of literature around this topic in this area of study. In terms of policy, the findings support LVC as a mechanism of considerable potential. Regarding fee-based LVC instruments, there are fairness issues in relation to the distribution of charges or exactions to households that could be addressed using location based measures. Furthermore, the approach developed for this analysis serves as valuable guidance for identifying sites with large potential for the implementation of development based instruments, for instance land readjustments or the sale/lease of additional development rights

    Data- og ekspertdreven variabelseleksjon for prediktive modeller i helsevesenet : mot økt tolkbarhet i underbestemte maskinlæringsproblemer

    Get PDF
    Modern data acquisition techniques in healthcare generate large collections of data from multiple sources, such as novel diagnosis and treatment methodologies. Some concrete examples are electronic healthcare record systems, genomics, and medical images. This leads to situations with often unstructured, high-dimensional heterogeneous patient cohort data where classical statistical methods may not be sufficient for optimal utilization of the data and informed decision-making. Instead, investigating such data structures with modern machine learning techniques promises to improve the understanding of patient health issues and may provide a better platform for informed decision-making by clinicians. Key requirements for this purpose include (a) sufficiently accurate predictions and (b) model interpretability. Achieving both aspects in parallel is difficult, particularly for datasets with few patients, which are common in the healthcare domain. In such cases, machine learning models encounter mathematically underdetermined systems and may overfit easily on the training data. An important approach to overcome this issue is feature selection, i.e., determining a subset of informative features from the original set of features with respect to the target variable. While potentially raising the predictive performance, feature selection fosters model interpretability by identifying a low number of relevant model parameters to better understand the underlying biological processes that lead to health issues. Interpretability requires that feature selection is stable, i.e., small changes in the dataset do not lead to changes in the selected feature set. A concept to address instability is ensemble feature selection, i.e. the process of repeating the feature selection multiple times on subsets of samples of the original dataset and aggregating results in a meta-model. This thesis presents two approaches for ensemble feature selection, which are tailored towards high-dimensional data in healthcare: the Repeated Elastic Net Technique for feature selection (RENT) and the User-Guided Bayesian Framework for feature selection (UBayFS). While RENT is purely data-driven and builds upon elastic net regularized models, UBayFS is a general framework for ensembles with the capabilities to include expert knowledge in the feature selection process via prior weights and side constraints. A case study modeling the overall survival of cancer patients compares these novel feature selectors and demonstrates their potential in clinical practice. Beyond the selection of single features, UBayFS also allows for selecting whole feature groups (feature blocks) that were acquired from multiple data sources, as those mentioned above. Importance quantification of such feature blocks plays a key role in tracing information about the target variable back to the acquisition modalities. Such information on feature block importance may lead to positive effects on the use of human, technical, and financial resources if systematically integrated into the planning of patient treatment by excluding the acquisition of non-informative features. Since a generalization of feature importance measures to block importance is not trivial, this thesis also investigates and compares approaches for feature block importance rankings. This thesis demonstrates that high-dimensional datasets from multiple data sources in the medical domain can be successfully tackled by the presented approaches for feature selection. Experimental evaluations demonstrate favorable properties of both predictive performance, stability, as well as interpretability of results, which carries a high potential for better data-driven decision support in clinical practice.Moderne datainnsamlingsteknikker i helsevesenet genererer store datamengder fra flere kilder, som for eksempel nye diagnose- og behandlingsmetoder. Noen konkrete eksempler er elektroniske helsejournalsystemer, genomikk og medisinske bilder. Slike pasientkohortdata er ofte ustrukturerte, høydimensjonale og heterogene og hvor klassiske statistiske metoder ikke er tilstrekkelige for optimal utnyttelse av dataene og god informasjonsbasert beslutningstaking. Derfor kan det være lovende å analysere slike datastrukturer ved bruk av moderne maskinlæringsteknikker for å øke forståelsen av pasientenes helseproblemer og for å gi klinikerne en bedre plattform for informasjonsbasert beslutningstaking. Sentrale krav til dette formålet inkluderer (a) tilstrekkelig nøyaktige prediksjoner og (b) modelltolkbarhet. Å oppnå begge aspektene samtidig er vanskelig, spesielt for datasett med få pasienter, noe som er vanlig for data i helsevesenet. I slike tilfeller må maskinlæringsmodeller håndtere matematisk underbestemte systemer og dette kan lett føre til at modellene overtilpasses treningsdataene. Variabelseleksjon er en viktig tilnærming for å håndtere dette ved å identifisere en undergruppe av informative variabler med hensyn til responsvariablen. Samtidig som variabelseleksjonsmetoder kan lede til økt prediktiv ytelse, fremmes modelltolkbarhet ved å identifisere et lavt antall relevante modellparametere. Dette kan gi bedre forståelse av de underliggende biologiske prosessene som fører til helseproblemer. Tolkbarhet krever at variabelseleksjonen er stabil, dvs. at små endringer i datasettet ikke fører til endringer i hvilke variabler som velges. Et konsept for å adressere ustabilitet er ensemblevariableseleksjon, dvs. prosessen med å gjenta variabelseleksjon flere ganger på en delmengde av prøvene i det originale datasett og aggregere resultater i en metamodell. Denne avhandlingen presenterer to tilnærminger for ensemblevariabelseleksjon, som er skreddersydd for høydimensjonale data i helsevesenet: "Repeated Elastic Net Technique for feature selection" (RENT) og "User-Guided Bayesian Framework for feature selection" (UBayFS). Mens RENT er datadrevet og bygger på elastic net-regulariserte modeller, er UBayFS et generelt rammeverk for ensembler som muliggjør inkludering av ekspertkunnskap i variabelseleksjonsprosessen gjennom forhåndsbestemte vekter og sidebegrensninger. En case-studie som modellerer overlevelsen av kreftpasienter sammenligner disse nye variabelseleksjonsmetodene og demonstrerer deres potensiale i klinisk praksis. Utover valg av enkelte variabler gjør UBayFS det også mulig å velge blokker eller grupper av variabler som representerer de ulike datakildene som ble nevnt over. Kvantifisering av viktigheten av variabelgrupper spiller en nøkkelrolle for forståelsen av hvorvidt datakildene er viktige for responsvariablen. Tilgang til slik informasjon kan føre til at bruken av menneskelige, tekniske og økonomiske ressurser kan forbedres dersom informasjonen integreres systematisk i planleggingen av pasientbehandlingen. Slik kan man redusere innsamling av ikke-informative variabler. Siden generaliseringen av viktighet av variabelgrupper ikke er triviell, undersøkes og sammenlignes også tilnærminger for rangering av viktigheten til disse variabelgruppene. Denne avhandlingen viser at høydimensjonale datasett fra flere datakilder fra det medisinske domenet effektivt kan håndteres ved bruk av variabelseleksjonmetodene som er presentert i avhandlingen. Eksperimentene viser at disse kan ha positiv en effekt på både prediktiv ytelse, stabilitet og tolkbarhet av resultatene. Bruken av disse variabelseleksjonsmetodene bærer et stort potensiale for bedre datadrevet beslutningsstøtte i klinisk praksis

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Subgroup discovery for structured target concepts

    Get PDF
    The main object of study in this thesis is subgroup discovery, a theoretical framework for finding subgroups in data—i.e., named sub-populations— whose behaviour with respect to a specified target concept is exceptional when compared to the rest of the dataset. This is a powerful tool that conveys crucial information to a human audience, but despite past advances has been limited to simple target concepts. In this work we propose algorithms that bring this framework to novel application domains. We introduce the concept of representative subgroups, which we use not only to ensure the fairness of a sub-population with regard to a sensitive trait, such as race or gender, but also to go beyond known trends in the data. For entities with additional relational information that can be encoded as a graph, we introduce a novel measure of robust connectedness which improves on established alternative measures of density; we then provide a method that uses this measure to discover which named sub-populations are more well-connected. Our contributions within subgroup discovery crescent with the introduction of kernelised subgroup discovery: a novel framework that enables the discovery of subgroups on i.i.d. target concepts with virtually any kind of structure. Importantly, our framework additionally provides a concrete and efficient tool that works out-of-the-box without any modification, apart from specifying the Gramian of a positive definite kernel. To use within kernelised subgroup discovery, but also on any other kind of kernel method, we additionally introduce a novel random walk graph kernel. Our kernel allows the fine tuning of the alignment between the vertices of the two compared graphs, during the count of the random walks, while we also propose meaningful structure-aware vertex labels to utilise this new capability. With these contributions we thoroughly extend the applicability of subgroup discovery and ultimately re-define it as a kernel method.Der Hauptgegenstand dieser Arbeit ist die Subgruppenentdeckung (Subgroup Discovery), ein theoretischer Rahmen für das Auffinden von Subgruppen in Daten—d. h. benannte Teilpopulationen—deren Verhalten in Bezug auf ein bestimmtes Targetkonzept im Vergleich zum Rest des Datensatzes außergewöhnlich ist. Es handelt sich hierbei um ein leistungsfähiges Instrument, das einem menschlichen Publikum wichtige Informationen vermittelt. Allerdings ist es trotz bisherigen Fortschritte auf einfache Targetkonzepte beschränkt. In dieser Arbeit schlagen wir Algorithmen vor, die diesen Rahmen auf neuartige Anwendungsbereiche übertragen. Wir führen das Konzept der repräsentativen Untergruppen ein, mit dem wir nicht nur die Fairness einer Teilpopulation in Bezug auf ein sensibles Merkmal wie Rasse oder Geschlecht sicherstellen, sondern auch über bekannte Trends in den Daten hinausgehen können. Für Entitäten mit zusätzlicher relationalen Information, die als Graph kodiert werden kann, führen wir ein neuartiges Maß für robuste Verbundenheit ein, das die etablierten alternativen Dichtemaße verbessert; anschließend stellen wir eine Methode bereit, die dieses Maß verwendet, um herauszufinden, welche benannte Teilpopulationen besser verbunden sind. Unsere Beiträge in diesem Rahmen gipfeln in der Einführung der kernelisierten Subgruppenentdeckung: ein neuartiger Rahmen, der die Entdeckung von Subgruppen für u.i.v. Targetkonzepten mit praktisch jeder Art von Struktur ermöglicht. Wichtigerweise, unser Rahmen bereitstellt zusätzlich ein konkretes und effizientes Werkzeug, das ohne jegliche Modifikation funktioniert, abgesehen von der Angabe des Gramian eines positiv definitiven Kernels. Für den Einsatz innerhalb der kernelisierten Subgruppentdeckung, aber auch für jede andere Art von Kernel-Methode, führen wir zusätzlich einen neuartigen Random-Walk-Graph-Kernel ein. Unser Kernel ermöglicht die Feinabstimmung der Ausrichtung zwischen den Eckpunkten der beiden unter-Vergleich-gestelltenen Graphen während der Zählung der Random Walks, während wir auch sinnvolle strukturbewusste Vertex-Labels vorschlagen, um diese neue Fähigkeit zu nutzen. Mit diesen Beiträgen erweitern wir die Anwendbarkeit der Subgruppentdeckung gründlich und definieren wir sie im Endeffekt als Kernel-Methode neu

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Probabilistic Inference for Model Based Control

    Get PDF
    Robotic systems are essential for enhancing productivity, automation, and performing hazardous tasks. Addressing the unpredictability of physical systems, this thesis advances robotic planning and control under uncertainty, introducing learning-based methods for managing uncertain parameters and adapting to changing environments in real-time. Our first contribution is a framework using Bayesian statistics for likelihood-free inference of model parameters. This allows employing complex simulators for designing efficient, robust controllers. The method, integrating the unscented transform with a variant of information theoretical model predictive control, shows better performance in trajectory evaluation compared to Monte Carlo sampling, easing the computational load in various control and robotics tasks. Next, we reframe robotic planning and control as a Bayesian inference problem, focusing on the posterior distribution of actions and model parameters. An implicit variational inference algorithm, performing Stein Variational Gradient Descent, estimates distributions over model parameters and control inputs in real-time. This Bayesian approach effectively handles complex multi-modal posterior distributions, vital for dynamic and realistic robot navigation. Finally, we tackle diversity in high-dimensional spaces. Our approach mitigates underestimation of uncertainty in posterior distributions, which leads to locally optimal solutions. Using the theory of rough paths, we develop an algorithm for parallel trajectory optimisation, enhancing solution diversity and avoiding mode collapse. This method extends our variational inference approach for trajectory estimation, employing diversity-enhancing kernels and leveraging path signature representation of trajectories. Empirical tests, ranging from 2-D navigation to robotic manipulators in cluttered environments, affirm our method's efficiency, outperforming existing alternatives

    Audio-visual multi-modality driven hybrid feature learning model for crowd analysis and classification

    Get PDF
    The high pace emergence in advanced software systems, low-cost hardware and decentralized cloud computing technologies have broadened the horizon for vision-based surveillance, monitoring and control. However, complex and inferior feature learning over visual artefacts or video streams, especially under extreme conditions confine majority of the at-hand vision-based crowd analysis and classification systems. Retrieving event-sensitive or crowd-type sensitive spatio-temporal features for the different crowd types under extreme conditions is a highly complex task. Consequently, it results in lower accuracy and hence low reliability that confines existing methods for real-time crowd analysis. Despite numerous efforts in vision-based approaches, the lack of acoustic cues often creates ambiguity in crowd classification. On the other hand, the strategic amalgamation of audio-visual features can enable accurate and reliable crowd analysis and classification. Considering it as motivation, in this research a novel audio-visual multi-modality driven hybrid feature learning model is developed for crowd analysis and classification. In this work, a hybrid feature extraction model was applied to extract deep spatio-temporal features by using Gray-Level Co-occurrence Metrics (GLCM) and AlexNet transferrable learning model. Once extracting the different GLCM features and AlexNet deep features, horizontal concatenation was done to fuse the different feature sets. Similarly, for acoustic feature extraction, the audio samples (from the input video) were processed for static (fixed size) sampling, pre-emphasis, block framing and Hann windowing, followed by acoustic feature extraction like GTCC, GTCC-Delta, GTCC-Delta-Delta, MFCC, Spectral Entropy, Spectral Flux, Spectral Slope and Harmonics to Noise Ratio (HNR). Finally, the extracted audio-visual features were fused to yield a composite multi-modal feature set, which is processed for classification using the random forest ensemble classifier. The multi-class classification yields a crowd-classification accurac12529y of (98.26%), precision (98.89%), sensitivity (94.82%), specificity (95.57%), and F-Measure of 98.84%. The robustness of the proposed multi-modality-based crowd analysis model confirms its suitability towards real-world crowd detection and classification tasks
    corecore