35,090 research outputs found

    Sum-Product Networks for Sequence Labeling

    Full text link
    We consider higher-order linear-chain conditional random fields (HO-LC-CRFs) for sequence modelling, and use sum-product networks (SPNs) for representing higher-order input- and output-dependent factors. SPNs are a recently introduced class of deep models for which exact and efficient inference can be performed. By combining HO-LC-CRFs with SPNs, expressive models over both the output labels and the hidden variables are instantiated while still enabling efficient exact inference. Furthermore, the use of higher-order factors allows us to capture relations of multiple input segments and multiple output labels as often present in real-world data. These relations can not be modelled by the commonly used first-order models and higher-order models with local factors including only a single output label. We demonstrate the effectiveness of our proposed models for sequence labeling. In extensive experiments, we outperform other state-of-the-art methods in optical character recognition and achieve competitive results in phone classification

    End-to-end learning potentials for structured attribute prediction

    Full text link
    We present a structured inference approach in deep neural networks for multiple attribute prediction. In attribute prediction, a common approach is to learn independent classifiers on top of a good feature representation. However, such classifiers assume conditional independence on features and do not explicitly consider the dependency between attributes in the inference process. We propose to formulate attribute prediction in terms of marginal inference in the conditional random field. We model potential functions by deep neural networks and apply the sum-product algorithm to solve for the approximate marginal distribution in feed-forward networks. Our message passing layer implements sparse pairwise potentials by a softplus-linear function that is equivalent to a higher-order classifier, and learns all the model parameters by end-to-end back propagation. The experimental results using SUN attributes and CelebA datasets suggest that the structured inference improves the attribute prediction performance, and possibly uncovers the hidden relationship between attributes

    End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks

    Full text link
    Recent years have seen a sharp increase in the number of related yet distinct advances in semantic segmentation. Here, we tackle this problem by leveraging the respective strengths of these advances. That is, we formulate a conditional random field over a four-connected graph as end-to-end trainable convolutional and recurrent networks, and estimate them via an adversarial process. Importantly, our model learns not only unary potentials but also pairwise potentials, while aggregating multi-scale contexts and controlling higher-order inconsistencies. We evaluate our model on two standard benchmark datasets for semantic face segmentation, achieving state-of-the-art results on both of them

    Fully Connected Deep Structured Networks

    Full text link
    Convolutional neural networks with many layers have recently been shown to achieve excellent results on many high-level tasks such as image classification, object detection and more recently also semantic segmentation. Particularly for semantic segmentation, a two-stage procedure is often employed. Hereby, convolutional networks are trained to provide good local pixel-wise features for the second step being traditionally a more global graphical model. In this work we unify this two-stage process into a single joint training algorithm. We demonstrate our method on the semantic image segmentation task and show encouraging results on the challenging PASCAL VOC 2012 dataset

    Neural CRF transducers for sequence labeling

    Full text link
    Conditional random fields (CRFs) have been shown to be one of the most successful approaches to sequence labeling. Various linear-chain neural CRFs (NCRFs) are developed to implement the non-linear node potentials in CRFs, but still keeping the linear-chain hidden structure. In this paper, we propose NCRF transducers, which consists of two RNNs, one extracting features from observations and the other capturing (theoretically infinite) long-range dependencies between labels. Different sequence labeling methods are evaluated over POS tagging, chunking and NER (English, Dutch). Experiment results show that NCRF transducers achieve consistent improvements over linear-chain NCRFs and RNN transducers across all the four tasks, and can improve state-of-the-art results

    Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data

    Full text link
    Surrogate modeling and uncertainty quantification tasks for PDE systems are most often considered as supervised learning problems where input and output data pairs are used for training. The construction of such emulators is by definition a small data problem which poses challenges to deep learning approaches that have been developed to operate in the big data regime. Even in cases where such models have been shown to have good predictive capability in high dimensions, they fail to address constraints in the data implied by the PDE model. This paper provides a methodology that incorporates the governing equations of the physical model in the loss/likelihood functions. The resulting physics-constrained, deep learning models are trained without any labeled data (e.g. employing only input data) and provide comparable predictive responses with data-driven models while obeying the constraints of the problem at hand. This work employs a convolutional encoder-decoder neural network approach as well as a conditional flow-based generative model for the solution of PDEs, surrogate model construction, and uncertainty quantification tasks. The methodology is posed as a minimization problem of the reverse Kullback-Leibler (KL) divergence between the model predictive density and the reference conditional density, where the later is defined as the Boltzmann-Gibbs distribution at a given inverse temperature with the underlying potential relating to the PDE system of interest. The generalization capability of these models to out-of-distribution input is considered. Quantification and interpretation of the predictive uncertainty is provided for a number of problems.Comment: 51 pages, 18 figures, submitted to Journal of Computational Physic

    Gaussian Filter in CRF Based Semantic Segmentation

    Full text link
    Artificial intelligence is making great changes in academy and industry with the fast development of deep learning, which is a branch of machine learning and statistical learning. Fully convolutional network [1] is the standard model for semantic segmentation. Conditional random fields coded as CNN [2] or RNN [3] and connected with FCN has been successfully applied in object detection [4]. In this paper, we introduce a multi-resolution neural network for FCN and apply Gaussian filter to the extended CRF kernel neighborhood and the label image to reduce the oscillating effect of CRF neural network segmentation, thus achieve higher precision and faster training speed.Comment: 11 pages, 9 figures, 2 table

    Structured Prediction using cGANs with Fusion Discriminator

    Full text link
    We propose the fusion discriminator, a single unified framework for incorporating conditional information into a generative adversarial network (GAN) for a variety of distinct structured prediction tasks, including image synthesis, semantic segmentation, and depth estimation. Much like commonly used convolutional neural network -- conditional Markov random field (CNN-CRF) models, the proposed method is able to enforce higher-order consistency in the model, but without being limited to a very specific class of potentials. The method is conceptually simple and flexible, and our experimental results demonstrate improvement on several diverse structured prediction tasks.Comment: 13 pages, 5 figures, 3 table

    A Structured Learning Approach with Neural Conditional Random Fields for Sleep Staging

    Full text link
    Sleep plays a vital role in human health, both mental and physical. Sleep disorders like sleep apnea are increasing in prevalence, with the rapid increase in factors like obesity. Sleep apnea is most commonly treated with Continuous Positive Air Pressure (CPAP) therapy. Presently, however, there is no mechanism to monitor a patient's progress with CPAP. Accurate detection of sleep stages from CPAP flow signal is crucial for such a mechanism. We propose, for the first time, an automated sleep staging model based only on the flow signal. Deep neural networks have recently shown high accuracy on sleep staging by eliminating handcrafted features. However, these methods focus exclusively on extracting informative features from the input signal, without paying much attention to the dynamics of sleep stages in the output sequence. We propose an end-to-end framework that uses a combination of deep convolution and recurrent neural networks to extract high-level features from raw flow signal with a structured output layer based on a conditional random field to model the temporal transition structure of the sleep stages. We improve upon the previous methods by 10% using our model, that can be augmented to the previous sleep staging deep learning methods. We also show that our method can be used to accurately track sleep metrics like sleep efficiency calculated from sleep stages that can be deployed for monitoring the response of CPAP therapy on sleep apnea patients. Apart from the technical contributions, we expect this study to motivate new research questions in sleep science.Comment: Accepted at IEEE International Conference on BigData 201

    Rethinking Monocular Depth Estimation with Adversarial Training

    Full text link
    Monocular depth estimation is an extensively studied computer vision problem with a vast variety of applications. Deep learning-based methods have demonstrated promise for both supervised and unsupervised depth estimation from monocular images. Most existing approaches treat depth estimation as a regression problem with a local pixel-wise loss function. In this work, we innovate beyond existing approaches by using adversarial training to learn a context-aware, non-local loss function. Such an approach penalizes the joint configuration of predicted depth values at the patch-level instead of the pixel-level, which allows networks to incorporate more global information. In this framework, the generator learns a mapping between RGB images and its corresponding depth map, while the discriminator learns to distinguish depth map and RGB pairs from ground truth. This conditional GAN depth estimation framework is stabilized using spectral normalization to prevent mode collapse when learning from diverse datasets. We test this approach using a diverse set of generators that include U-Net and joint CNN-CRF. We benchmark this approach on the NYUv2, Make3D and KITTI datasets, and observe that adversarial training reduces relative error by several fold, achieving state-of-the-art performance
    • …
    corecore