885 research outputs found

    Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression

    Get PDF
    Dual Y shift 30 six-phase motors are expected to be extensively applied in high-power yet energy-effective fields, and a harmonic-suppressing control strategy plays a vital role in extending their prominent features of low losses and ultra-quiet operation. Aiming at the suppression of harmonic voltages, this paper proposes a six-phase space vector pulse width modulation method based on an optimization model, namely OM-SVPWM. First, four adjacent large vectors are employed in each of 12 sectors on a fundamental sub-plane. Second, the optimization model is constructed to intelligently determine activation durations of the four vectors, where its objective function aims to minimize the synthesis result on a harmonic sub-plane, and its constraint condition is that the synthesis result on the fundamental sub-plane satisfies a reference vector. Finally, to meet the real-time requirement, optimum solutions are obtained by using general central path following algorithm (GCPFA). Simulation and experiment results prove that, the OM-SVPWM performs around 37% better than a state-of-the-art competitive SVPWM in terms of harmonics suppression, which promise the proposed OM-SVPWM conforms to the energy-effective direction in actual engineering applications.Peer reviewe

    Input current shaped ac-to-dc converters

    Get PDF
    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator

    COMPARISON OF SINUSOIDAL PULSEWIDTH - MODULATION METHODS

    Get PDF
    The different sinusoidal (natural) sampling methods for bipolar and unipolar pulsewidth modulation of one- and three-phase inverters are compared. The load voltage spectra, the voltage, the flux and the current distortion factors are determined, and on this basis it is shown that unipolar modulation produces a lower value of harmonic current losses than bipolar modulation does, particularly, for one-phase inverters and high value of fundamental voltage

    Analysis of acoustic noise spectrum of domestic induction heating systems controlled by phase-accumulator modulators

    Get PDF
    In domestic induction heating (IH) applications, the modulation technique applied to the inverter has a high influence on the acoustic noise emissions. These noise emissions must be avoided since they may be audible and annoying to the final user. This paper analyzes the acoustic noise emissions that appear when a series half-bridge resonant inverter is operated with a phase-accumulator based modulator. This modulation technique has the advantage of operating in the frequency domain, and it is compared with the classical PWM modulator regarding the audible noise generated. The frequencies of the tones in the acoustic noise spectrum are theoretically calculated from the parameters of the phaseaccumulator based modulator. The SFM (Spectral Flatness Measure) is used to quantify the number of cases in which tones are generated by the modulation. Two techniques are applied to the phase-accumulator based modulator and their effect is tested. Theoretical results are experimentally verified

    Hybrid Output Voltage Modulation (PWM-FSHE) for a Modular Battery System Based on a Cascaded H-Bridge Inverter for Electric Vehicles Reducing Drivetrain Losses and Current Ripple

    Get PDF
    This paper shows a preliminary study about the output voltage modulation of a modular battery system based on a seven-level cascaded H-bridge inverter used for vehicle propulsion. Two generally known modulation techniques, pulse width modulation (PWM) and fundamental selective harmonic elimination (FSHE), are extensively compared for such an innovative modular battery system inverter considering EVs\u27 broad torque-speed range. The inverter and the battery losses, as well as the inverter-induced current THD, are modeled and quantified using simulations. At low speeds, if the modulation index M is below 0.3, FSHE induces a high current THD (>>5%) and, thus, cannot be used. At medium speeds, FSHE reduces the drivetrain losses (including the battery losses), while operating at higher speeds, it even reduces the current THD. Thus, an individual boundary between multilevel PWM and FSHE can be determined using weightings for efficiency and current quality. Based on this, a simple hybrid modulation technique is suggested for modular battery system inverters, improving the simulated drive cycle efficiency by a maximum of 0.29% to 0.42% for a modeled small passenger vehicle. Furthermore, FSHE\u27s high speed dominance is demonstrated using a simple experimental setup with an inductive load

    PWM control techniques for three phase three level inverter drives

    Get PDF
    In this paper two very efficient pulse width modulation techniques were discussed named Sin pulse width modulation and space vector pulse width modulation. The basic structure of the three-level inverter neutral-point clamped is introduced and the basic idea about space vector pulse width modulation for three-level voltage source inverter has been discussed in detail. Nearest three vectors space vector pulse width modulation control algorithm is adopted as the control strategy for the three phase three level NPC inverter in order to compensate the neutral-point shifting. Mathematical formulation for calculating switching sequence has determined. Comparative analysis proving superiority of the space vector pulse width modulation technique over the conventional pulse width modulation, and the results of the simulations of inverter confirm the feasibility and advantage of the space vector pulse width modulation strategy over sin pulse width modulation in terms of good utilization of dc-bus voltage, low current ripple and reduced switching frequency. Space vector pulse width modulation provides advantages better fundamental output voltage and useful in improving harmonic performance and reducing total harmonic distortion

    Comparison of multilevel PWM versus interleaved based sinewave shaping for two-stage current source inverters used in PV applications

    Get PDF
    This paper investigates the advantages of using interleaved based direct sinusoidal current shaping techniques as alternative to 5-level Pulse Width Modulation (PWM) when used in conjunction to a two stage Current Source Inverter (CSI) in PV applications. By using simulation based modelling it is proven that; in combination with switching harmonic cancellation techniques; for a given output power, direct shaping allows for better utilization of devices and subsequently the minimization of losses without sacrificing power quality

    An Novel Six-Segment Modulation Strategy for Three-Phase Isolated PFC Converter

    Get PDF
    A three-phase isolated rectifier features bidirectional power conversion and galvanic isolation, and is attractive as a high-efficiency energy conversion system. However, when a conventional modulation is applied to this rectifier, the excessive DC-link current ripple will result in increasing switching losses or the size of DC-link inductance, which is not cost-effective. In order to effectively reduce the current ripple, this paper proposes a “six segment” PWM (Pulse Width Modulation) strategy. It can significantly reduce the current ripple compared with the existing “eight segment” PWM strategy. Meanwhile, the current quality of the grid is improved. Finally, the experimental tests were carried out. The experimental results reveal that, compared to the traditional “eight segment” PWM, the dc-side current ripple significantly reduced from 2 A to 0.8 A, the total harmonic distortion significantly reduced from 5.69% to 2.41%, and the power factor increased from 0.87 to 0.99, verifying the effectiveness of the proposed method
    corecore