352,213 research outputs found

    Fully Coherent X-ray Pulses from a Regenerative Amplifier Free Electron Laser

    Full text link
    We propose and analyze a novel regenerative amplifier free electron laser (FEL) to produce fully coherent x-ray pulses. The method makes use of narrow-bandwidth Bragg crystals to form an x-ray feedback loop around a relatively short undulator. Self-amplified spontaneous emission (SASE) from the leading electron bunch in a bunch train is spectrally filtered by the Bragg reflectors and is brought back to the beginning of the undulator to interact repeatedly with subsequent bunches in the bunch train. The FEL interaction with these short bunches not only amplifies the radiation intensity but also broadens its spectrum, allowing for effective transmission of the x-rays outside the crystal bandwidth. The spectral brightness of these x-ray pulses is about two to three orders of magnitude higher than that from a single-pass SASE FEL.Comment: 11 pages, 6 figure

    Distributed multi-user MIMO transmission using real-time sigma-delta-over-fiber for next generation fronthaul interface

    Get PDF
    To achieve the massive device connectivity and high data rate demanded by 5G, wireless transmission with wider signal bandwidths and higher-order multiple-input multiple-output (MIMO) is inevitable. This work demonstrates a possible function split option for the next generation fronthaul interface (NGFI). The proof-of-concept downlink architecture consists of real-time sigma-delta modulated signal over fiber (SDoF) links in combination with distributed multi-user (MU) MIMO transmission. The setup is fully implemented using off-the-shelf and in-house developed components. A single SDoF link achieves an error vector magnitude (EVM) of 3.14% for a 163.84 MHz-bandwidth 256-QAM OFDM signal (958.64 Mbps) with a carrier frequency around 3.5 GHz transmitted over 100 m OM4 multi-mode fiber at 850 nm using a commercial QSFP module. The centralized architecture of the proposed setup introduces no frequency asynchronism among remote radio units. For most cases, the 2 x 2 MU-MIMO transmission has little performance degradation compared to SISO, 0.8 dB EVM degradation for 40.96 MHz-bandwidth signals and 1.4 dB for 163.84 MHz-bandwidth on average, implying that the wireless spectral efficiency almost doubles by exploiting spatial multiplexing. A 1.4 Gbps data rate (720 Mbps per user, 163.84 MHz-bandwidth, 64-QAM) is reached with an average EVM of 6.66%. The performance shows that this approach is feasible for the high-capacity hot-spot scenario

    Magnetic Vortices in High Temperature Superconductors

    Full text link
    It is suggested that modes, observed in recent neutron scattering experiments by Lake {\it et al.}, on La2−x_{2-x}Srx_xCuO4_4 in strong magnetic fields (≈\approx 7 T), are due to the existence of antiferromagnetic moments associated with the cores of vortices generated by the field. These moments form one-dimensional chains along the cc-axis (the vortex axis), which at finite temperatures are disordered. At temperatures higher than 10 K the correlation length gets shorter than the lattice parameter, resulting in no scattering from coherent spin-waves above that temperature. The bandwidth of the spin-waves is estimated to be ≈\approx 4 meV in accordance with the observations.Comment: 3 pages, 1 figur

    A broadband current sensor based on the X-Hall architecture

    Get PDF
    A broadband current sensor, which is fully integrated and galvanically-isolated, is presented in this paper. The current sensor relies only on a Hall-effect probe to realize the magnetic sensing core so as to minimize the cost and the occupied space. Bandwidth limitations of state-of-the-art Hall-effect probes are overcame by combining the novel X-Hall architecture with a wide bandwidth differential-difference current-feedback amplifier. A prototype implemented in 0.16 \u3bcm BCD technology demonstrates a bandwidth wider than 20 MHz. Offset, sensitivity and power consumption are comparable to the state of the art. This is the first Hall-only current sensor achieving a bandwidth higher than 3 MHz

    Assessing radiative transfer models trained by numerical weather forecasts using sun-tracking radiometric measurements for satellite link characterization up to W band

    Get PDF
    Radio communications, and in particular Earth-to-satellite links, are worldwide used for delivering digital services. The bandwidth demand of such services is increasing accordingly to the advent of more advanced applications (e.g., multimedia services, deep-space explorations, etc.) thus pushing the scientific community toward the investigation of channel carriers at higher frequencies. When using carrier frequencies above X band, the main drawback is how to tackle the impact of tropospheric processes (i.e., rain, cloud, water vapor). This work assesses the joint use of weather forecast models, radiative transfer models and Sun-tracking radiometric measurements to explore their potential benefits in predicting path attenuation and sky noise temperature for slant paths at frequencies between K and W band, thus paving the way to the optimization of satellite link-budgets
    • …
    corecore