2 research outputs found

    Integrated circuit design for implantable neural interfaces

    Get PDF
    Progress in microfabrication technology has opened the way for new possibilities in neuroscience and medicine. Chronic, biocompatible brain implants with recording and stimulation capabilities provided by embedded electronics have been successfully demonstrated. However, more ambitious applications call for improvements in every aspect of existing implementations. This thesis proposes two prototypes that advance the field in significant ways. The first prototype is a neural recording front-end with spectral selectivity capabilities that implements a design strategy that leads to the lowest reported power consumption as compared to the state of the art. The second one is a bidirectional front-end for closed-loop neuromodulation that accounts for self-interference and impedance mismatch thus enabling simultaneous recording and stimulation. The design process and experimental verification of both prototypes is presented herein
    corecore