222 research outputs found

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    Low Power CMOS Design : Exploring Radiation Tolerance in a 90 nm Low Power Commercial Process

    Get PDF
    This thesis aims to examine radiation tolerance of low power digital CMOS circuits in a commercial 90 nm low power triple-well process from TSMC. By combining supply voltage scaling and Radiation-Hardened By Design (RHBD) design techniques, the goal is to achieve low supply voltage, radiation tolerant, circuit behavior. The target circuit architecture for comparison between different radiation hardening techniques is a Successive Approximation Register (SAR) architecture comprising both combinational and sequential logic. The purpose of the SAR architecture is to emulate a larger system, since larger systems are usually composed of combinational and sequential building blocks. The method used for achieving low power operation is primarily voltage scaling, with the ultimate goal of reaching subthreshold operation, while maintaining radiation tolerant circuit behavior. Radiation hardening is performed on circuit-level by applying RHBD circuit topologies, as well as architectural-level mitigation techniques. This thesis includes three papers within the field of robust low power CMOS design. Two of the papers cover low power level shifter designs in 90 nm and 65 nm process from STMicroelectronics. The third paper examines memory element design using minority-3 gates and inverters for robust low voltage operation. Prototyping has been conducted on low power CMOS building blocks including level shifter and memory design, for potential use in future radiation tolerant designs. Prototyping has been conducted on two chips from two different 90 nm processes from STMicroelectronics and TSMC. A test setup for radiation induced errors has been developed. Experimental radiation tests of the SAR architectures were conducted at SAFE, revealing no radiation induced errors

    Ultralow-Power Digital Control and Signal Conditioning in GaAs MMIC Core Chip for X-Band AESA Systems

    Get PDF
    This work presents the design and characterization of an ultralow-power core chip for electronically scanned arrays at X-band, implemented in 0.25-/0.5-μm E-/D-mode gallium arsenide (GaAs) pHEMT technology. In particular, design details are given about the two core functional blocks embedded in the microwave monolithic integrated circuit (MMIC): a 12-bit phase and amplitude control circuit and an 18-bit serial-to-parallel (S2P) interface. The S2P interface was designed resorting to a custom symmetric device model, expressly conceived for the time-domain simulations required for digital circuits. Due to the adoption of a differential structure with resistive pull-ups, it achieves a state-of-the-art power consumption of 2.2 mW/bit and nearly 87% yield. The analog circuit includes a 6-bit phase shifter (PS) and a 6-bit attenuator. To mitigate risks, two different PS architectures have been developed and are compared in this work, discussing advantages and drawbacks of the different solutions. Since the two designs share the same target specifications, a truly fair comparison can be made not only in terms of performance but also concerning robustness and repeatability, thus providing useful guidelines for the selection of the most appropriate strategy. In particular, it is shown that one architecture outperforms the other by about 2 dB and 1.5° in terms of insertion loss and rms phase error, respectively

    Sub-threshold Operation of a Timing Error Detection Latch

    Get PDF
    Ajoitusvirheentunnistus (TED) mahdollistaa energian kulutuksen vähentämisen mikroprosessoreissa. Tässä diplomityössä on kaksi versiota ajoitusvirheentunnistavasta salvasta (esim. TDTBsubI ja TDTBsubII) ja systeemitason testipiiri (SystemTest), joka käyttää TDTBsub salpaa, mikä on suunniteltu toimimaan kynnysalueen alapuolella. Diplomityö esittelee ensin dynaamisen jännitteen skaalauksen (DVS), koska TED käytetään sellaisissa järjestelmissä. Seuraavaksi esitellään teoriaa kynnysalueen alapuolen suunnittelun haasteista. Sitten esitellään molempien TDTBsub salpojen ja SystemTest-lohkojen suunnittelu. Simulaatiotuloksia esitellään keskittyen operaatiotaajuuteen, energian kulutukseen ja toimintavarmuuteen variaatiot huomioon ottaen. Operoitaessa kynnysalueen alapuolella TDTB-piirillä keskityttiin koon mitoittamiseen ja suunnittelutyyliin. Ennen kaikkea kaikkien komponenttien mitoituksen piti olla suurempi kuin minimi CMOS-tekniikan leveydet. Vaikka mitoittamisella saavutettiin toimintavarmuutta kynnysalueen alapuolella toimittaessa myös energian kulutus kasvoi siellä toimittaessa. Perinteisiä vuotovirtojen vähentäviä mitoitustoimenpiteitä tehtiin suurimmalle osalle komponenteista. Logiikkatyyli on tärkeää kynnysalueen alapuolella operoitaessa. TDTBsubII salvassa uuden tekniikan näytetään antavan systeemitason suorituskykyä. Simulaatioilla näytettiin kuinka ajoitusvirheentunnistus kykeni toimimaan kynnystason alapuolella. TDTBsubI:n ja yhteenlaskun testipiirin piirinkuvio tehtiin 65nm CMOS-prosessilla. TDTBsubII salpaa ei tehty, koska se suunniteltiin piirin määräajan jälkeen. Piiriä tarkasteltaessa osoittautui, että piiri ei toiminut. Piirin toimimattomuus johtui tuotantovaiheessa tapahtuneesta virheestä eikä suunnittelusta.Timing error detection (TED) is used to enable the reduction the energy consumption of microprocessors. In this thesis work, two versions of TED latches (i.e. TDTBsubI and TDTBsubII) and a system-level test circuit (SystemTest) that utilizes the TDTBsubI latch have been designed to operate in sub-threshold. The thesis first introduces dynamic voltage scaling (DVS) since TED is utilized with such a system. Next, theory is given to highlight the challenges within sub-threshold. The design of the both TDTBsub latches and SystemTest are then given. Simulation results follow with a focus on operation frequency, energy consumption, and robustness in the presence of variations. To operate TDTBsub into sub-threshold, attention was given to sizing and logic style. In general, the sizing of all components was required to be larger than the minimum CMOS width. Although this provided robustness in sub-threshold, the energy consumption in above sub-threshold was much higher. General leakage reduction sizing techniques were also applied to the majority of components. The choice of logic style is important for sub-threshold operation. In the TDTBsubII latch, a new technique is shown to provide system-level capability. Simulations displayed the capability of TED in sub-threshold. The layout of TDTBsubI and an adder test circuit were constructed in 65 nm CMOS. The TDTBsubII latch was not built since it was designed after the chip deadline. Upon inspection of the chip, it was determined to be inoperative. This mistake was a result of the manufacturering process and not the design in this work

    Energy- and Area-Efficient DC-DC Converters Fabricated in Low Temperature Crystalline Silicon-on-Glass Technology

    Get PDF
    The display industry is moving toward the development of system-on-panel (SOP) architectures to make increasingly compact small-format displays and reduce manufacturing cost. Presently, the voltages required by pixel drivers, row scan logic, and timing circuitry, are generated from a single supply voltage using charge pumps fabricated on a high voltage, monolithic integrated circuit mounted off the glass panel. In this work, a new high-efficiency charge pump architecture for fabrication on display glass substrates is presented. The distinguishing feature of this work is the nestedclock timing scheme used to improve power efficiency and reduce output voltage noise without the use of external capacitors. The circuit is intended for implementation on a novel low-temperature crystalline silicon thin-film transistor technology (SiOG) that exhibits superior performance compared to other low-temperature fabrication processes. Based on simulation results, the proposed circuit exhibits both smaller ripple voltage (61% smaller) and improved power efficiency (80.6% vs. 67.8%) when compared to previous work
    corecore