18,318 research outputs found

    Fluid flow meter with comparator reference means Patent

    Get PDF
    Photometric flow meter with comparator reference mean

    Conventional Industrial Robotics Applied to the Process of Tomato Grafting Using the Splicing Technique

    Get PDF
    Horticultural grafting is routinely performed manually, demanding a high degree of concentration and requiring operators to withstand extreme humidity and temperature conditions. This article presents the results derived from adapting the splicing technique for tomato grafting, characterized by the coordinated work of two conventional anthropomorphic industrial robots with the support of low-cost passive auxiliary units for the transportation, handling, and conditioning of the seedlings. This work provides a new approach to improve the efficiency of tomato grafting. Six test rates were analyzed, which allowed the system to be evaluated across 900 grafted units, with gradual increases in the speed of robots work, operating from 80 grafts/hour to over 300 grafts/hour. The results obtained show that a higher number of grafts per hour than the number manually performed by skilled workers could be reached easily, with success rates of approximately 90% for working speeds around 210–240 grafts/hour

    Planar digital nanoliter dispensing system based on thermocapillary actuation

    Get PDF
    We provide guidelines for the design and operation of a planar digital nanodispensing system based on thermocapillary actuation. Thin metallic microheaters embedded within a chemically patterned glass substrate are electronically activated to generate and control 2D surface temperature distributions which either arrest or trigger liquid flow and droplet formation on demand. This flow control is a consequence of the variation of a liquid’s surface tension with temperature, which is used to draw liquid toward cooler regions of the supporting substrate. A liquid sample consisting of several microliters is placed on a flat rectangular supply cell defined by chemical patterning. Thermocapillary switches are then activated to extract a slender fluid filament from the cell and to divide the filament into an array of droplets whose position and volume are digitally controlled. Experimental results for the power required to extract a filament and to divide it into two or more droplets as a function of geometric and operating parameters are in excellent agreement with hydrodynamic simulations. The capability to dispense ultralow volumes onto a 2D substrate extends the functionality of microfluidic devices based on thermocapillary actuation previously shown effective in routing and mixing nanoliter liquid samples on glass or silicon substrates

    A Protocol Generator Tool for Automatic In-Vitro HPV Robotic Analysis

    Get PDF
    Human Papilloma Virus (HPV) could develop precancerous lesions and invasive cancer, as it is the main cause of nearly all cases of cervical cancer. There are many strains of HPV and current vaccines can only protect against some of them. This makes the detection and genotyping of HPV a research area of utmost importance. Several biomedical systems can detect HPV in DNA samples; however, most of them do not have a procedure as fast, automatic or precise as it is actually needed in this field. This manuscript presents a novel XML-based hierarchical protocol architecture for biomedical robots to describe each protocol step and execute it sequentially, along with a robust and automatic robotic system for HPV DNA detection capable of processing from 1 to 24 samples simultaneously in a fast (from 45 to 162 min), efficient (100% markers effectiveness) and precise (able to detect 36 different HPV genotypes) way. It includes an efficient artificial vision process as the last step of the diagnostic.FIDETIA P055-12/E03Ministerio de Economía y Competitivida TEC2016-77785-

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program

    Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.

    Get PDF
    The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources
    corecore