1,820 research outputs found

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Embedded System for Biometric Identification

    Get PDF

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Building Blocks for Adaptive Modular Sensing Systems

    Get PDF
    This thesis contributes towards the development of systems and strategies by which sensor and actuator components can be combined to produce flexible and robust sensor systems for a given application. A set of intelligent modular blocks (building blocks) have been created from which composite sensors (made up of multiple sensor and actuator components) can be rapidly reconfigured for the construction of Adaptive Modular Sensing Systems. The composite systems are expected to prove useful in several application domains including industrial control, inspection systems, mobile robotics, monitoring and data acquisition. The intelligent building blocks, referred to as transducer interface modules, contain embedded knowledge about their capabilities and how they can interact with other modules. These modules encapsulate a general purpose modular hardware architecture that provides an interface between the sensors, the actuators, and the communication medium. The geometry of each transducer interface module is a cube. A connector mechanism implemented on each face of the module enables physical connection of the modules. Each module provides a core functionality and can be connected to other modules to form more capable composite sensors. Once the modules are combined, the capabilities (e.g., range, resolution, sample rate, etc.) and functionality (e.g., temperature measurement) of the composite sensor is determined and communicated to other sensors in the enviornment. For maximum flexibility, a distributed software architecture is executed on the blocks to enable automatic acquisition of configuration-specific algorithms. This logical algorithm imparts a collective identity to the composite group, and processes data based on the capabilities and functionalities of the transducers present in the system. A knowledge representation scheme allows each module in the composite group to store and communicate its functionality and capabilities to other connected modules in the system

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors
    corecore