104 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    The development of the toner density sensor for closed-loop feedback laser printer calibration

    Get PDF
    A new infrared (IR) sensor was developed for application in closed-loop feedback printer calibration as it relates to monochrome (black toner only) laser printers. The toner density IR sensor (TDS) was introduced in the early 1980’s; however, due to cost and limitation of technologies at the time, implementation was not accomplished until within the past decade. Existing IR sensor designs do not discuss/address: • EMI (electromagnetic interference) effects on the sensor due to EP (electrophotography) components • Design considerations for environmental conditions • Sensor response time as it affects printer process speed The toner density sensor (TDS) implemented in the Lexmark E series printer reduces these problems and eliminates the use of the current traditional “open-loop” (meaning feedback are parameters not directly affecting print darkness such as page count, toner level, etc.) calibration process where print darkness is adjusted using previously calculated and stored EP process parameters. The historical process does not have the ability to capture cartridge component variation and environmental changes which affect print darkness variation. The TDS captures real time data which is used to calculate EP process parameters for the adjustment of print darkness; as a result, greatly reducing variations uncontrolled by historical printer calibration. Specifically, the first and primary purpose of this research is to reduce print darkness variation using the TDS. The second goal is to mitigate the TDS EMI implementation issue for reliable data accuracy

    Direct imaging of a digital-micromirror device for configurable microscopic optical potentials

    Full text link
    Programable spatial light modulators (SLMs) have significantly advanced the configurable optical trapping of particles. Typically, these devices are utilized in the Fourier plane of an optical system, but direct imaging of an amplitude pattern can potentially result in increased simplicity and computational speed. Here we demonstrate high-resolution direct imaging of a digital micromirror device (DMD) at high numerical apertures (NA), which we apply to the optical trapping of a Bose-Einstein condensate (BEC). We utilise a (1200 x 1920) pixel DMD and commercially available 0.45 NA microscope objectives, finding that atoms confined in a hybrid optical/magnetic or all-optical potential can be patterned using repulsive blue-detuned (532 nm) light with 630(10) nm full-width at half-maximum (FWHM) resolution, within 5% of the diffraction limit. The result is near arbitrary control of the density the BEC without the need for expensive custom optics. We also introduce the technique of time-averaged DMD potentials, demonstrating the ability to produce multiple grayscale levels with minimal heating of the atomic cloud, by utilising the high switching speed (20 kHz maximum) of the DMD. These techniques will enable the realization and control of diverse optical potentials for superfluid dynamics and atomtronics applications with quantum gases. The performance of this system in a direct imaging configuration has wider application for optical trapping at non-trivial NAs.Comment: 9 page

    Minimization of Halftone Noise in FLAT Regions for Improved Print Quality

    Get PDF
    The work in this thesis proposes a novel algorithm for enhancing the quality of flat regions in printed color image documents. The algorithm is designed to identify the flat regions based on certain criteria and filter these regions to minimize the noise prior and post Halftoning so as to make the hard copy look visibly pleasing. Noise prior to halftone process is removed using a spatial Gaussian filter together with a Hamming window, concluded from results after implementing various filtering techniques. A clustered dithering is applied in each channel of the image as Halftoning process. Furthermore, to minimize the post halftone noise, the halftone structure of the image is manipulated according to the neighboring sub-cells in their respective channels. This is done to reduce the brightness variation (a cause for noise) between the neighboring subcells. Experimental results show that the proposed algorithm efficiently minimizes noise in flat regions of mirumal gradient change in color images

    Printing with tonalli: Reproducing featherwork from precolonial Mexico using structural colorants

    Get PDF
    Two of the most significant cases of extant 16th-century featherwork from Mexico are the so-called Moctezuma’s headdress and the Ahuizotl shield. While the feathers used in these artworks exhibit lightfast colors, their assembly comprises mainly organic materials, which makes them extremely fragile. Printed media, including books, catalogs, educational materials, and fine copies, offer an accessible means for audiences to document and disseminate visual aspects of delicate cultural artifacts without risking their integrity. Nevertheless, the singular brightness and iridescent colors of feathers are difficult to communicate to the viewer in printed reproductions when traditional pigments are used. This research explores the use of effect pigments (multilayered reflective structures) and improved halftoning techniques for additive printing, with the objective of enhancing the reproduction of featherwork by capturing its changing color and improving texture representation via a screen printing process. The reproduced images of featherwork exhibit significant perceptual resemblances to the originals, primarily owing to the shared presence of structural coloration. We applied structure-aware halftoning to better represent the textural qualities of feathers without compromising the performance of effect pigments in the screen printing method. Our prints show angle-dependent color, although their gamut is reduced. The novelty of this work lies in the refinement of techniques for printing full-color images by additive printing, which can enhance the 2D representation of the appearance of culturally significant artifact

    Towards the Control of Electrophotographic-based 3-Dimensional Printing: Image-Based Sensing and Modeling of Surface Defects

    Get PDF
    Electro-Photography (EP) has been used for decades for fast, cheap, and reliable printing in offices and homes around the world. It has been shown that extending the use of EP for 3D printing is feasible; multiple layered prints are already commercially available (color laser printers) but only for a very limited number of layers. Many of the advantages of laser printing make EP 3D printing desirable including: speed, reliability, selective coloring, ability to print a thermoplastic, possibilities for multi-material printing, ability to print materials not amenable to liquid ink formulations. However, many challenges remain before EP-based 3D printing can be commercially viable. A limiting factor in using the same system architecture as a traditional laser printer is that as the thickness of the part increases, material deposition becomes more difficult with each layer since the increased thickness reduces the field strength. Different system configurations have been proposed where the layer is printed on intermediate stations and are subsequently transferred to the work piece. Layer registration and uniform transfer from the intermediate station become crucial factors in this architecture. At the Print Research and Imaging Systems Modeling (PRISM) Lab preliminary tests have confirmed the feasibility of using EP for Additive Manufacturing (AM). However, similar issues were encountered to those reported in literature as the number of layers increased, resulting in non-uniform brittle 3D structures. The defects were present but not obvious at each layer, and as the part built up, the defects add up and became more obvious. The process, as in many printers, did not include a control system for the ultimate system output (print), and the actuation method (electrostatic charge) is not entirely well characterized or sensed to be used in a control system. This research intends to help the development of a model and an image-based sensing system that can be used for control of material deposition defects for an EP 3D printing process. This research leverages from the expertise at RIT and the Rochester area in Printing, Electrophotography, Rapid Prototyping, Control, and Imaging Sciences
    • …
    corecore