11,072 research outputs found

    Surface profile prediction and analysis applied to turning process

    Get PDF
    An approach for the prediction of surface profile in turning process using Radial Basis Function (RBF) neural networks is presented. The input parameters of the RBF networks are cutting speed, depth of cut and feed rate. The output parameters are Fast Fourier Transform (FFT) vector of surface profile for the prediction of surface profile. The RBF networks are trained with adaptive optimal training parameters related to cutting parameters and predict surface profile using the corresponding optimal network topology for each new cutting condition. A very good performance of surface profile prediction, in terms of agreement with experimental data, was achieved with high accuracy, low cost and high speed. It is found that the RBF networks have the advantage over Back Propagation (BP) neural networks. Furthermore, a new group of training and testing data were also used to analyse the influence of tool wear and chip formation on prediction accuracy using RBF neural networks

    Parameterization of point-cloud freeform surfaces using adaptive sequential learning RBFnetworks

    Get PDF
    We propose a self-organizing Radial Basis Function (RBF) neural network method for parameterization of freeform surfaces from larger, noisy and unoriented point clouds. In particular, an adaptive sequential learning algorithm is presented for network construction from a single instance of point set. The adaptive learning allows neurons to be dynamically inserted and fully adjusted (e.g. their locations, widths and weights), according to mapping residuals and data point novelty associated to underlying geometry. Pseudo-neurons, exhibiting very limited contributions, can be removed through a pruning procedure. Additionally, a neighborhood extended Kalman filter (NEKF) was developed to significantly accelerate parameterization. Experimental results show that this adaptive learning enables effective capture of global low-frequency variations while preserving sharp local details, ultimately leading to accurate and compact parameterization, as characterized by a small number of neurons. Parameterization using the proposed RBF network provides simple, low cost and low storage solutions to many problems such as surface construction, re-sampling, hole filling, multiple level-of-detail meshing and data compression from unstructured and incomplete range data. Performance results are also presented for comparison

    FPGA-based enhanced probabilistic convergent weightless network for human iris recognition

    Get PDF
    This paper investigates how human identification and identity verification can be performed by the application of an FPGA based weightless neural network, entitled the Enhanced Probabilistic Convergent Neural Network (EPCN), to the iris biometric modality. The human iris is processed for feature vectors which will be employed for formation of connectivity, during learning and subsequent recognition. The pre-processing of the iris, prior to EPCN training, is very minimal. Structural modifications were also made to the Random Access Memory (RAM) based neural network which enhances its robustness when applied in real-time

    Combining case based reasoning with neural networks

    Get PDF
    This paper presents a neural network based technique for mapping problem situations to problem solutions for Case-Based Reasoning (CBR) applications. Both neural networks and CBR are instance-based learning techniques, although neural nets work with numerical data and CBR systems work with symbolic data. This paper discusses how the application scope of both paradigms could be enhanced by the use of hybrid concepts. To make the use of neural networks possible, the problem's situation and solution features are transformed into continuous features, using techniques similar to CBR's definition of similarity metrics. Radial Basis Function (RBF) neural nets are used to create a multivariable, continuous input-output mapping. As the mapping is continuous, this technique also provides generalisation between cases, replacing the domain specific solution adaptation techniques required by conventional CBR. This continuous representation also allows, as in fuzzy logic, an associated membership measure to be output with each symbolic feature, aiding the prioritisation of various possible solutions. A further advantage is that, as the RBF neurons are only active in a limited area of the input space, the solution can be accompanied by local estimates of accuracy, based on the sufficiency of the cases present in that area as well as the results measured during testing. We describe how the application of this technique could be of benefit to the real world problem of sales advisory systems, among others

    Innovative machine learning techniques for security detection problems

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Most of the currently available network security techniques cannot cope with the dynamic and increasingly complex nature of the attacks on distributed computer systems. Therefore, an automated and adaptive defensive tool is imperative for computer networks. Alongside the existing techniques for preventing intrusions such as encryption and firewalls, Intrusion Detection System (IDS) technology has established itself as an emerging field that is able to detect unauthorized access and abuse of computer systems from both internal users and external offenders. Most of the novel approaches in this field have adopted Artificial Intelligence (AI) technologies such as Artificial Neural Networks (ANN) to improve detection performance. The true power and advantage of ANN lie in its ability to represent both linear and non-linear underlying functions and learn these functions directly from the data being modeled. However, ANN is computationally expensive due to its demanding processing power and this leads to the overfitting problem, i.e. the network is unable to extrapolate accurately once the input is outside of the training data range. These limitations challenge security systems with low detection rate, high false alarm rate and excessive computation cost. In this research, a novel Machine Learning (ML) algorithm is developed to alleviate those difficulties of conventional detection techniques used in available IDS. By implementing Adaptive Boosting and Semi-parametric radial-basis-function neural networks, this model aims at minimizing learning bias (how well the model fits the available sample data) and generalization variance (how stable the model is for unseen instances) at an affordable cost of computation. The proposed method is applied to a set of Security Detection Problems which aim to detect security breaches within computer networks. In particular, we consider two benchmarking problems: intrusion detection and anti-spam filtering. It is empirically shown that our technique outperforms other state-of-the-art predictive algorithms in both of the problems, with significantly increased detection accuracy, minimal false alarms and relatively low computation
    • …
    corecore