265 research outputs found

    MONet: Heterogeneous Memory over Optical Network for Large-Scale Data Centre Resource Disaggregation

    Get PDF
    Memory over Optical Network (MONet) system is a disaggregated data center architecture where serial (HMC) / parallel (DDR4) memory resources can be accessed over optically switched interconnects within and between racks. An FPGA/ASIC-based custom hardware IP (ReMAT) supports heterogeneous memory pools, accommodates optical-to-electrical conversion for remote access, performs the required serial/parallel conversion and hosts the necessary local memory controller. Optically interconnected HMC-based (serial I/O type) memory card is accessed by a memory controller embedded in the compute card, simplifying the hardware near the memory modules. This substantially reduces overheads on latency, cost, power consumption and space. We characterize CPU-memory performance, by experimentally demonstrating the impact of distance, number of switching hops, transceivers, channel bonding and bit-rate per transceiver on bit-error rate, power consumption, additional latency, sustained remote memory bandwidth/throughput (using industry standard benchmark STREAMS) and cloud workload performance (such as operations per second, average added latency and retired instructions per second on memcached with YCSB cloud workloads). MONet pushes the CPU-memory operational limit from a few centimetres to 10s of metres, yet applications can experience as low as 10% performance penalty (at 36m) compared to a direct-attached equivalent. Using the proposed parallel topology, a system can support up to 100,000 disaggregated cards

    OrthoNoC: a broadcast-oriented dual-plane wireless network-on-chip architecture

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksOn-chip communication remains as a key research issue at the gates of the manycore era. In response to this, novel interconnect technologies have opened the door to new Network-on-Chip (NoC) solutions towards greater scalability and architectural flexibility. Particularly, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. This work presents ORTHONOC, a wired-wireless architecture that differs from existing proposals in that both network planes are decoupled and driven by traffic steering policies enforced at the network interfaces. With these and other design decisions, ORTHONOC seeks to emphasize the ordered broadcast advantage offered by the wireless technology. The performance and cost of ORTHONOC are first explored using synthetic traffic, showing substantial improvements with respect to other wired-wireless designs with a similar number of antennas. Then, the applicability of ORTHONOC in the multiprocessor scenario is demonstrated through the evaluation of a simple architecture that implements fast synchronization via ordered broadcast transmissions. Simulations reveal significant execution time speedups and communication energy savings for 64-threaded benchmarks, proving that the value of ORTHONOC goes beyond simply improving the performance of the on-chip interconnect.Peer ReviewedPostprint (author's final draft

    Reduced pin-count testing, 3D SICs, time division multiplexing, test access mechanism, simultaneous bidirectional signaling

    Get PDF
    3D Stacked Integrated Circuits (SICs) offer a promising way to cope with the technology scaling; however, the test access requirements are highly complicated due to increased transistor density and a limited number of test channels. Moreover, although the vertical interconnects in 3D SIC are capable of high-speed data transfer, the overall test speed is restricted by scan-chains that are not optimized for timing. Reduced Pin-Count Testing (RPCT) has been effectively used under these scenarios. In particular, Time Division Multiplexing (TDM) allows full utilization of interconnect bandwidth while providing low scan frequencies supported by the scan chains. However, these methods rely on Uni-Directional Signaling (UDS), in which a chip terminal (pin or a TSV) can either be used to transmit or receive data at a given time. This requires that at least two chip terminals are available at every die interface (Tester-Die or Die-Die) to form a single test channel. In this paper, we propose Simultaneous Bi-Directional Signaling (SBS), which allows a chip terminal to be used simultaneously to send and receive data, thus forming a test channel using one pin instead of two. We demonstrate how SBS can be used in conjunction with TDM to achieve reduced pin count testing while using only half the number of pins compared to conventional TDM based methods, consuming only 22.6% additional power. Alternatively, the advantage could be manifested as a test time reduction by utilizing all available test channels, allowing more parallelism and test time reduction down to half compared to UDS-based TDM. Experiments using 45nm technology suggest that the proposed method can operate at up to 1.2 GHz test clock for a stack of 3-dies, whereas for higher frequencies, a binary-weighted transmitter is proposed capable of up to 2.46 GHz test clock

    Design of Optical Interconnect Transceiver Circuits and Network-on-chip Architectures for Inter- and Intra-chip Communication

    Get PDF
    The rapid expansion in data communication due to the increased multimedia applications and cloud computing services necessitates improvements in optical transceiver circuitry power efficiency as these systems scale well past 10 Gb/s. In order to meet these requirements, a 26 GHz transimpedance amplifier (TIA) is presented in a 0.25-µm SiGe BiCMOS technology. It employs a transformer-based regulated cascode (RGC) input stage which provides passive negative-feedback gain that enhances the effective transconductance of the TIA’s input common-base transistor; reducing the input resistance and pro- viding considerable bandwidth extension without significant noise degradation or power consumption. The TIA achieves a 53 dBΩ single-ended transimpedance gain with a 26√ GHz bandwidth and 21.3 pA/H z average input-referred noise current spectral density. Total chip power including output buffering is 28.2 mW from a 2.5 V supply, with the core TIA consuming 8.2 mW, and the chip area including pads is 960 µm × 780 µm. With the advance of photonic devices, optical interconnects becomes a promising technology to replace the conventional electrical channels for the high-bandwidth and power efficient inter/intra-chip interconnect. Second, a silicon photonic transceiver is presented for a silicon ring resonator-based optical interconnect architecture in a 1V standard 65nm CMOS technology. The transmitter circuits incorporate high-swing drivers with non-linear pre-emphasis and automatic bias-based tuning for resonance wavelength stabilization. An optical forwarded-clock adaptive inverter-based transimpedance amplifier (TIA) receiver trades-off power for varying link budgets by employing an on-die eye monitor and scaling the TIA supply for the required sensitivity. At 5 GB/s operation, the ring modulator un- der 4Vpp driver achieves 12.7dB extinction ratio with 4.04mW power consumption, while a 0.28nm tuning range is obtained at 6.8µW/GHz efficiency with the bias-based tuning scheme implemented with the 2Vpp transmitter. When tested with a wire-bonded 150f- F p-i-n photodetector, the receiver achieves -12.7dBm sensitivity at a BER=10−15 and consumes 2.2mW at 8 GB/s. Third, a novel Nano-Photonic Network-on-Chip (NoC) architecture, called LumiNoC, is proposed for high performance and power-efficient interconnects for the chip-multi- processors (CMPs). A 64-node LumiNoC under synthetic traffic enjoys 50% less latency at low loads versus other reported photonic NoCs, and ∼25% less latency versus the electrical 2D mesh NoCs on realistic workloads. Under the same ideal throughput, LumiNoC achieves laser power reduction of 78%, and overall power reduction of 44% versus competing designs

    Photonic Interconnection Networks for Applications in Heterogeneous Utility Computing Systems

    Get PDF
    Growing demands in heterogeneous utility computing systems in future cloud and high performance computing systems are driving the development of processor-hardware accelerator interconnects with greater performance, flexibility, and dynamism. Recent innovations in the field of utility computing have led to an emergence in the use of heterogeneous compute elements. By leveraging the computing advantages of hardware accelerators alongside typical general purpose processors, performance efficiency can be maximized. The network linking these compute nodes is increasingly becoming the bottleneck in these architectures, limiting the hardware accelerators to be restricted to localized computing. A high-bandwidth, agile interconnect is an imperative enabler for hardware accelerator delocalization in heterogeneous utility computing. A redesign of these systems' interconnect and architecture will be essential to establishing high-bandwidth, low-latency, efficient, and dynamic heterogeneous systems that can meet the challenges of next-generation utility computing. By leveraging an optics-based approach, this dissertation presents the design and implementation of optically-connected hardware accelerators (OCHA) that exploit the distance-independent energy dissipation and bandwidth density of photonic transceivers, in combination with the flexibility, efficiency and data parallelization offered by optical networks. By replacing the electronic buses with an optical interconnection network, architectures that delocalize hardware accelerators can be created that are otherwise infeasible. With delocalized optically-connected hardware accelerator nodes accessible by processors at run time, the system can alleviate the network latency issues plague current heterogeneous systems. Accelerators that would otherwise sit idle, waiting for it's master CPU to feed it data, can instead operate at high utilization rates, leading to dramatic improvements in overall system performance. This work presents a prototype optically-connect hardware accelerator module and custom optical-network-aware, dynamic hardware accelerator allocator that communicate transparently and optically across an optical interconnection network. The hardware accelerators and processor are optimized to enable hardware acceleration across an optical network using fast packet-switching. The versatility of the optical network enables additional performance benefits including optical multicasting to exploit the data parallelism found in many accelerated data sets. The integration of hardware acceleration, heterogeneous computing, and optics constitutes a critical step for both computing and optics. The massive data parallelism, application dependent-location and function, as well as network latency, and bandwidth limitations facing networks today complement well with the strength of optical communications-based systems. Moreover, ongoing efforts focusing on development of low-cost optical components and subsystems that are suitable for computing environment may benefit from the high-volume heterogeneous computing market. This work, therefore, takes the first steps in merging the areas of hardware acceleration and optics by developing architectures, protocols, and systems to interface with the two technologies and demonstrating areas of potential benefits and areas for future work. Next-generation heterogeneous utility computing systems will indubitably benefit from the use of efficient, flexible and high-performance optically connect hardware acceleration
    • …
    corecore