1,639 research outputs found

    Time interleaved optical sampling for ultra-high speed A/D conversion

    Get PDF
    A scheme is proposed for increasing the sampling rate of analogue-to-digital conversion by more than an order of magnitude by combining state-of-the-art A/D converters with photonic technology. Ultra-high speed sampling is performed optically by a multiwavelength pulse train. Wavelength demultiplexers convert the high repetition rate data stream of samples into parallel data streams that can be handled by available electronic A/D converters

    Photonic-Electronic Ultra-Broadband Signal Processing: Concepts, Devices, and Applications

    Get PDF
    Combining photonic integrated circuits (PIC) with millimeter-wave electronics opens novel perspectives in generation and detection of ultra-broadband signals with disruptive potential for a wide variety of applications. Here, we will give an overview on our recent progress in the field of ultra-broadband photonic-electronic signal processing, covering device concepts such as silicon plasmonic integration, signal processing concepts such as Kramers-Kronig-based phase reconstruction of THz signals, as well as application demonstrations in the field of high-speed wireless data transmission

    Time interleaved optical sampling for ultra-high speed A/D conversion

    Full text link

    Performance evaluation of wavelength division multiplexing photonic analogue-to-digital converters for high-resolution radar systems

    Get PDF
    The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-noise ratio (SNR) metric. Two different WDM photonic ADC architectures are considered for the digitization of radar signals with 5 GHz of bandwidth (spatial resolution of 3 cm), in order to provide a comprehensive study of the compromises present when deploying radar signals with high-resolution: 1) a four-channel architecture with each channel employing an ADC with 5 GSamples/s, and 2) an eight-channel architecture with each channel employing an ADC with 2.5 GSamples/s. For peak powers of the pulsed source between 10 and 20 dBm and a distance between the radar antenna and the sensing object of 2.4 meters, peak SNR levels between 29 and 39 dB are achieved with the eight-channel architecture, which shows higher peak SNR levels when compared with the four-channel architecture. For the eight-channel architecture and for the same peak powers of the pulsed source, peak SNR levels between 11 and 16 dB are obtained when the distance increases to 13.5 meters. With this evaluation using the peak SNR, it is possible to assess the performance limits when choosing a specific radar range, while keeping the same resolution.info:eu-repo/semantics/publishedVersio

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Implementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to-Digital Converter Based on a Polyphase Demultiplexing Architecture

    Get PDF
    AbstractIn this paper we present the practical implementation of a high-speed polyphase sampling and demultiplexing architecture for optoelectronics analog-to-digital converters (OADCs). The architecture consists of a one-stage divide-by-eight decimator circuit where optically-triggered samplers are cascaded to sample an analog input signal, and demultiplex different phases of the sampled signal to yield low data rate for electronic quantization. Electrical-in to electrical-out data format is maintained through the sampling, demultiplexing and quantization processes of the architecture thereby avoiding the need for electrical-to-optical and optical-to-electrical signal conversions. We experimentally demonstrate a 10.24 giga samples per second (GS/s), 12-bit resolution OADC system comprising the optically-triggered sampling circuits integrated with commercial electronic quantizers. Measurements performed on the OADC yielded an effective bit resolution (ENOB) of 10.3 bits, spurious free dynamic range (SFDR) of -32 dB and signal-to-noise and distortion ratio (SNDR) of 63.7 dB
    • …
    corecore