789 research outputs found

    Curves, codes, and cryptography

    Get PDF
    This thesis deals with two topics: elliptic-curve cryptography and code-based cryptography. In 2007 elliptic-curve cryptography received a boost from the introduction of a new way of representing elliptic curves. Edwards, generalizing an example from Euler and Gauss, presented an addition law for the curves x2 + y2 = c2(1 + x2y2) over non-binary fields. Edwards showed that every elliptic curve can be expressed in this form as long as the underlying field is algebraically closed. Bernstein and Lange found fast explicit formulas for addition and doubling in coordinates (X : Y : Z) representing (x, y) = (X/Z, Y/Z) on these curves, and showed that these explicit formulas save time in elliptic-curve cryptography. It is easy to see that all of these curves are isomorphic to curves x2 + y2 = 1 + dx2y2 which now are called "Edwards curves" and whose shape covers considerably more elliptic curves over a finite field than x2 + y2 = c2(1 + x2y2). In this thesis the Edwards addition law is generalized to cover all curves ax2 +y2 = 1+dx2y2 which now are called "twisted Edwards curves." The fast explicit formulas for addition and doubling presented here are almost as fast in the general case as they are for the special case a = 1. This generalization brings the speed of the Edwards addition law to every Montgomery curve. Tripling formulas for Edwards curves can be used for double-base scalar multiplication where a multiple of a point is computed using a series of additions, doublings, and triplings. The use of double-base chains for elliptic-curve scalar multiplication for elliptic curves in various shapes is investigated in this thesis. It turns out that not only are Edwards curves among the fastest curve shapes, but also that the speed of doublings on Edwards curves renders double bases obsolete for this curve shape. Elliptic curves in Edwards form and twisted Edwards form can be used to speed up the Elliptic-Curve Method for integer factorization (ECM). We show how to construct elliptic curves in Edwards form and twisted Edwards form with large torsion groups which are used by the EECM-MPFQ implementation of ECM. Code-based cryptography was invented by McEliece in 1978. The McEliece public-key cryptosystem uses as public key a hidden Goppa code over a finite field. Encryption in McEliece’s system is remarkably fast (a matrix-vector multiplication). This system is rarely used in implementations. The main complaint is that the public key is too large. The McEliece cryptosystem recently regained attention with the advent of post-quantum cryptography, a new field in cryptography which deals with public-key systems without (known) vulnerabilities to attacks by quantum computers. The McEliece cryptosystem is one of them. In this thesis we underline the strength of the McEliece cryptosystem by improving attacks against it and by coming up with smaller-key variants. McEliece proposed to use binary Goppa codes. For these codes the most effective attacks rely on information-set decoding. In this thesis we present an attack developed together with Daniel J. Bernstein and Tanja Lange which uses and improves Stern’s idea of collision decoding. This attack is faster by a factor of more than 150 than previous attacks, bringing it within reach of a moderate computer cluster. We were able to extract a plaintext from a ciphertext by decoding 50 errors in a [1024, 524] binary code. The attack should not be interpreted as destroying the McEliece cryptosystem. However, the attack demonstrates that the original parameters were chosen too small. Building on this work the collision-decoding algorithm is generalized in two directions. First, we generalize the improved collision-decoding algorithm for codes over arbitrary fields and give a precise analysis of the running time. We use the analysis to propose parameters for the McEliece cryptosystem with Goppa codes over fields such as F31. Second, collision decoding is generalized to ball-collision decoding in the case of binary linear codes. Ball-collision decoding is asymptotically faster than any previous attack against the McEliece cryptosystem. Another way to strengthen the system is to use codes with a larger error-correction capability. This thesis presents "wild Goppa codes" which contain the classical binary Goppa codes as a special case. We explain how to encrypt and decrypt messages in the McEliece cryptosystem when using wild Goppa codes. The size of the public key can be reduced by using wild Goppa codes over moderate fields which is explained by evaluating the security of the "Wild McEliece" cryptosystem against our generalized collision attack for codes over finite fields. Code-based cryptography not only deals with public-key cryptography: a code-based hash function "FSB"was submitted to NIST’s SHA-3 competition, a competition to establish a new standard for cryptographic hashing. Wagner’s generalized birthday attack is a generic attack which can be used to find collisions in the compression function of FSB. However, applying Wagner’s algorithm is a challenge in storage-restricted environments. The FSBday project showed how to successfully mount the generalized birthday attack on 8 nodes of the Coding and Cryptography Computer Cluster (CCCC) at Technische Universiteit Eindhoven to find collisions in the toy version FSB48 which is contained in the submission to NIST

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Part I:

    Get PDF

    Fast algorithm for real-time rings reconstruction

    Get PDF
    The GAP project is dedicated to study the application of GPU in several contexts in which real-time response is important to take decisions. The definition of real-time depends on the application under study, ranging from answer time of ÎŒs up to several hours in case of very computing intensive task. During this conference we presented our work in low level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6]. Apart from the study of dedicated solution to decrease the latency due to data transport and preparation, the computing algorithms play an essential role in any GPU application. In this contribution, we show an original algorithm developed for triggers application, to accelerate the ring reconstruction in RICH detector when it is not possible to have seeds for reconstruction from external trackers

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Cylinders and spheres : toddlers engage in problem solving

    Get PDF
    Every day more six million infants and toddlers (children under 3 years of age) enter some kind of out-of-home care, with 22% of this group attending center-based programs. Studies on the quality of care in centers indicate that 40% of these children are in poor quality settings while 51 % are in mediocre to medium quality settings. Two factors contributing to these low ratings are lack of age-appropriate materials and lack of learning opportunities. To address these data Piaget\u27s theory of constructivism guided the design of a study to provide evidence of construction of knowledge that occurred when toddlers were provided with interesting objects and were allowed to play freely with those objects. The study took place in one classroom of a child care center located in a small rural town in the Midwest. Eight children 18 through 24 months old participated in the study. Materials selected for the study (clear cylinders and plastic spheres) were available to the children for two hours each day during activity time. Children were allowed to play freely with the materials. Adults in the classroom provided support but did not direct the activity. Two video cameras and descriptive field notes captured children\u27s actions with the materials. Data were analyzed to identify actions and sequences of actions that indicated construction of knowledge or problem solving. Findings from this study indicated that children progressively organized their actions as they explored the objects, identified problems, and worked to solve those problems. When given time and allowed to play freely with the materials, children were tenacious in their problem solving, often working on one problem over several days. The data revealed five components to the problem-solving process: exploration, contradiction, repetition, experimentation, solution. The types of problems children pursued were related to Piaget\u27s categories of reality: space, time and causality. Based on the findings, implications are provided for teachers (both pre-service and in-service) and teacher educators

    Knowledge is power: Quantum chemistry on novel computer architectures

    Get PDF
    In the first chapter of this thesis, a background of fundamental quantum chemistry concepts is provided. Chapter two contains an analysis of the performance and energy efficiency of various modern computer processor architectures while performing computational chemistry calculations. In chapter three, the processor architectural study is expanded to include parallel computational chemistry algorithms executed across multiple-node computer clusters. Chapter four describes a novel computational implementation of the fundamental Hartree-Fock method which significantly reduces computer memory requirements. In chapter five, a case study of quantum chemistry two-electron integral code interoperability is described. The final chapters of this work discuss applications of quantum chemistry. In chapter six, an investigation of the esterification of acetic acid on acid-functionalized silica is presented. In chapter seven, the application of ab initio molecular dynamics to study the photoisomerization and photocyclization of stilbene is discussed. Final concluding remarks are noted in chapter eight

    Explicit Methods in Number Theory

    Get PDF
    These notes contain extended abstracts on the topic of explicit methods in number theory. The range of topics includes asymptotics for ïŹeld extensions and class numbers, random matrices and L-functions, rational points on curves and higher-dimensional varieties, and aspects of lattice basis reduction
    • 

    corecore