256 research outputs found

    High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits

    Get PDF
    Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Enhanced Feedback Iterative Decoding of Sparse Quantum Codes

    Full text link
    Decoding sparse quantum codes can be accomplished by syndrome-based decoding using a belief propagation (BP) algorithm.We significantly improve this decoding scheme by developing a new feedback adjustment strategy for the standard BP algorithm. In our feedback procedure, we exploit much of the information from stabilizers, not just the syndrome but also the values of the frustrated checks on individual qubits of the code and the channel model. Furthermore we show that our decoding algorithm is superior to belief propagation algorithms using only the syndrome in the feedback procedure for all cases of the depolarizing channel. Our algorithm does not increase the measurement overhead compared to the previous method, as the extra information comes for free from the requisite stabilizer measurements.Comment: 10 pages, 11 figures, Second version, To be appeared in IEEE Transactions on Information Theor

    Adaptive weight estimator for quantum error correction

    Get PDF
    Quantum error correction of a surface code or repetition code requires the pairwise matching of error events in a space-time graph of qubit measurements, such that the total weight of the matching is minimized. The input weights follow from a physical model of the error processes that affect the qubits. This approach becomes problematic if the system has sources of error that change over time. Here we show how the weights can be determined from the measured data in the absence of an error model. The resulting adaptive decoder performs well in a time-dependent environment, provided that the characteristic time scale τenv\tau_{\mathrm{env}} of the variations is greater than δt/pˉ\delta t/\bar{p}, with δt\delta t the duration of one error-correction cycle and pˉ\bar{p} the typical error probability per qubit in one cycle.Comment: 5 pages, 4 figure

    Fifteen years of quantum LDPC coding and improved decoding strategies

    No full text
    The near-capacity performance of classical low-density parity check (LDPC) codes and their efficient iterative decoding makes quantum LDPC (QLPDC) codes a promising candidate for quantum error correction. In this paper, we present a comprehensive survey of QLDPC codes from the perspective of code design as well as in terms of their decoding algorithms. We also conceive a modified non-binary decoding algorithm for homogeneous Calderbank-Shor-Steane-type QLDPC codes, which is capable of alleviating the problems imposed by the unavoidable length-four cycles. Our modified decoder outperforms the state-of-the-art decoders in terms of their word error rate performance, despite imposing a reduced decoding complexity. Finally, we intricately amalgamate our modified decoder with the classic uniformly reweighted belief propagation for the sake of achieving an improved performance

    Practical entanglement distillation scheme using recurrence method and quantum low density parity check codes

    Get PDF
    Many entanglement distillation schemes use either universal random hashing or breeding as their final step to obtain almost perfect shared EPR pairs spite of a high yield, the hardness of decoding a random linear code makes the use of random hashing and breeding infeasible in practice this pilot study, we analyze the performance of the recurrence method, a well-known entanglement distillation scheme, with its final random hashing or breeding procedure being replaced by various efficiently decodable quantum codes. Among all the replacements investigated, the one using a certain adaptive quantum low density parity check (QLDPC) code is found to give the highest yield for Werner states over a wide range of noise level- the yield for using this QLDPC code is higher than the first runner up by more than 25% over a wide parameter range this respect, the effectiveness of using QLDPC codes in practical entanglement distillation is illustrated. © The Author(s) 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Quantum error correction protects quantum search algorithms against decoherence

    No full text
    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10-3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered
    • …
    corecore