254 research outputs found

    Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays

    Full text link
    The communication range of wireless networks can be greatly improved by using distributed beamforming from a set of independent radio nodes. One of the key challenges in establishing a beamformed communication link from separate radios is achieving carrier frequency and sample timing synchronization. This paper describes an implementation that addresses both carrier frequency and sample timing synchronization simultaneously using RF signaling between designated master and slave nodes. By using a pilot signal transmitted by the master node, each slave estimates and tracks the frequency and timing offset and digitally compensates for them. A real-time implementation of the proposed system was developed in GNU Radio and tested with Ettus USRP N210 software defined radios. The measurements show that the distributed array can reach a residual frequency error of 5 Hz and a residual timing offset of 1/16 the sample duration for 70 percent of the time. This performance enables distributed beamforming for range extension applications.Comment: Submitted to 2019 IEEE Aerospace Conferenc

    IoT Networking: Path to Ubiquitous Connectivity

    Get PDF
    University of Minnesota Ph.D. dissertation. August 2019. Major: Computer Science. Advisor: Tian He. 1 computer file (PDF); xii, 105 pages.Internet of Things (IoT) is upon us with the number of IoT connected devices reach- ing 17.68 billion in the year 2016 and keeps an increasing rate of 17%. The popularity of IoT brings the prosperity and diversity of wireless technologies as one of its founda- tions. Existing wireless technologies, such as WiFi, Bluetooth, and LTE, are evolving and new technologies, such as SigFox and LoRa, are proposed to satisfy various needs under emerging application scenarios. For example, WiFi is evolving to provide higher throughput with the novel 802.11ac technology and the Bluetooth SIG has proposed the Bluetooth Low Energy (BLE) technology to support low-power applications. However, wireless technologies are victims of their own success. The vastly increasing wireless devices compete for the limited wireless spectrum and result in the performance degradation of each device. What makes it worse is that diverse wireless devices are using heterogeneous PHY and MAC layers designs which are not compliant with each other. As a result, sophisticated wireless coordination methods working well for each homogeneous technology are not applicable in the heterogeneous wireless scenario for the failure to communicate among heterogeneous devices. This dissertation aims at fundamentally solving the burden of communication in today’s heterogeneous wireless environment. Specifically, we try to build direct communication among heterogeneous wireless technologies, referred to as the cross-technology communication (CTC). It is counter-intuition and long believed impossible, but we find two opportunities in both the packet level and physical (PHY) layer to make the challenging mission possible. First, wireless devices are commonly able to do energy-sensing of wireless packets in the air. Energy sensing is capable to figure out packet-level information, such as the packet duration and timing. Based on the energy-sensing capability, we design DCTC, a CTC technology that piggybacks cross-technology messages within the timing of transmitted wireless packets. Specifically, we slightly perturb the timing of packets emitted from a wireless device to form detectable energy patterns to establish CTC. Testbed evaluation has shown that we can successfully transmit information at 760bps while keeping the delay of each packet no longer than 0.5ms under any traffic pattern. Second, in the PHY layer, high-end wireless technologies are flexible, i.e., a larger symbol set, in the modulation and demodulation. With careful choices of symbols, those wireless technologies are able to emulate and decode the PHY layer signal of a low-end one. We propose two systems BlueBee and XBee which aim at building direct com- munication between two heterogeneous IoT technologies, Bluetooth and ZigBee, with the idea of signal emulation and cross-decoding respectively. The former achieves signal emulation by carefully choosing the Bluetooth payload bits so that the output signal emulates a legitimate ZigBee packet which can be successfully demodulated by a com- modity ZigBee devices without any changes. The latter proposes a general method to support the bidirectional communication in the PHY-layer CTC by moving the complex- ity to the high-end receiver for the demodulation of signal from a low-end transmitter. Our testbed evaluation has shown that our technologies successfully boost the data rate of the state of the arts by over 10,000x times, which is approaching the ZigBee standard. This result makes CTC possible to play more roles in real-time applications, such as network coordination. In summary, this dissertation provides a new communication paradigm in a heteroge- neous wireless environment, which is to provide direct communication for heterogeneous wireless devices. Such communication is built upon two opportunities: (i) wireless de- vices are capable to sense energy in the air so that specifically designed energy patterns can transmit cross-technology information; (ii) a high-end wireless technology is more flexible and possible to emulate and demodulate the signal from a low-end technology for communication. The technologies developed in the dissertation will be the build- ing blocks for the future designs of efficient channel coordination and ubiquitous data exchange among heterogeneous wireless devices

    A Coordination Model and Framework for Developing Distributed Mobile Applications

    Get PDF
    How to coordinate multiple devices to work together as a single application is one of the most important challenges for building a distributed mobile application. Mobile devices play important roles in daily life and resolving this challenge is vital. Many coordination models have already been developed to support the implementation of parallel applications, and LIME (Linda In a Mobile Environment) is the most popular member. This thesis evaluates and analyzes the advantages and disadvantages of the LIME, and its predecessor Linda coordination model. This thesis proposes a new coordination model that focuses on overcoming the drawbacks of LIME and Linda. The new coordination model leverages the features of consistent hashing in order to obtain better coordination performance. Additionally, this new coordination model utilizes the idea of replica mechanism to guarantee data integrity. A cross-platform coordination framework, based on the new coordination model, is presented by this thesis in order to facilitate and simplify the development of distributed mobile applications. This framework aims to be robust and high-performance, supporting not only powerful devices such as smartphones but also constrained devices, which includes IoT sensors. The framework utilizes many advanced concepts and technologies such as CoAP protocol, P2P networking, Wi-Fi Direct, and Bluetooth Low Energy to achieve the goals of high-performance and fault-tolerance. Six experiments have been done to test the coordination model and framework from di erent aspects including bandwidth, throughput, packages per second, hit rate, and data distribution. Results of the experiments demonstrate that the proposed coordination model and framework meet the requirements of high-performance and fault-tolerance

    Alternative Network Deployments: Taxonomy, Characterization, Technologies, and Architectures

    Get PDF
    This document presents a taxonomy of a set of "Alternative Network Deployments" that emerged in the last decade with the aim of bringing Internet connectivity to people or providing a local communication infrastructure to serve various complementary needs and objectives. They employ architectures and topologies different from those of mainstream networks and rely on alternative governance and business models. The document also surveys the technologies deployed in these networks, and their differing architectural characteristics, including a set of definitions and shared properties. The classification considers models such as Community Networks, Wireless Internet Service Providers (WISPs), networks owned by individuals but leased out to network operators who use them as a low-cost medium to reach the underserved population, networks that provide connectivity by sharing wireless resources of the users, and rural utility cooperatives

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Enable Reliable and Secure Data Transmission in Resource-Constrained Emerging Networks

    Get PDF
    The increasing deployment of wireless devices has connected humans and objects all around the world, benefiting our daily life and the entire society in many aspects. Achieving those connectivity motivates the emergence of different types of paradigms, such as cellular networks, large-scale Internet of Things (IoT), cognitive networks, etc. Among these networks, enabling reliable and secure data transmission requires various resources including spectrum, energy, and computational capability. However, these resources are usually limited in many scenarios, especially when the number of devices is considerably large, bringing catastrophic consequences to data transmission. For example, given the fact that most of IoT devices have limited computational abilities and inadequate security protocols, data transmission is vulnerable to various attacks such as eavesdropping and replay attacks, for which traditional security approaches are unable to address. On the other hand, in the cellular network, the ever-increasing data traffic has exacerbated the depletion of spectrum along with the energy consumption. As a result, mobile users experience significant congestion and delays when they request data from the cellular service provider, especially in many crowded areas. In this dissertation, we target on reliable and secure data transmission in resource-constrained emerging networks. The first two works investigate new security challenges in the current heterogeneous IoT environment, and then provide certain countermeasures for reliable data communication. To be specific, we identify a new physical-layer attack, the signal emulation attack, in the heterogeneous environment, such as smart home IoT. To defend against the attack, we propose two defense strategies with the help of a commonly found wireless device. In addition, to enable secure data transmission in large-scale IoT network, e.g., the industrial IoT, we apply the amply-and-forward cooperative communication to increase the secrecy capacity by incentivizing relay IoT devices. Besides security concerns in IoT network, we seek data traffic alleviation approaches to achieve reliable and energy-efficient data transmission for a group of users in the cellular network. The concept of mobile participation is introduced to assist data offloading from the base station to users in the group by leveraging the mobility of users and the social features among a group of users. Following with that, we deploy device-to-device data offloading within the group to achieve the energy efficiency at the user side while adapting to their increasing traffic demands. In the end, we consider a perpendicular topic - dynamic spectrum access (DSA) - to alleviate the spectrum scarcity issue in cognitive radio network, where the spectrum resource is limited to users. Specifically, we focus on the security concerns and further propose two physical-layer schemes to prevent spectrum misuse in DSA in both additive white Gaussian noise and fading environments
    • …
    corecore