867 research outputs found

    Adaptive Methods for Point Cloud and Mesh Processing

    Get PDF
    Point clouds and 3D meshes are widely used in numerous applications ranging from games to virtual reality to autonomous vehicles. This dissertation proposes several approaches for noise removal and calibration of noisy point cloud data and 3D mesh sharpening methods. Order statistic filters have been proven to be very successful in image processing and other domains as well. Different variations of order statistics filters originally proposed for image processing are extended to point cloud filtering in this dissertation. A brand-new adaptive vector median is proposed in this dissertation for removing noise and outliers from noisy point cloud data. The major contributions of this research lie in four aspects: 1) Four order statistic algorithms are extended, and one adaptive filtering method is proposed for the noisy point cloud with improved results such as preserving significant features. These methods are applied to standard models as well as synthetic models, and real scenes, 2) A hardware acceleration of the proposed method using Microsoft parallel pattern library for filtering point clouds is implemented using multicore processors, 3) A new method for aerial LIDAR data filtering is proposed. The objective is to develop a method to enable automatic extraction of ground points from aerial LIDAR data with minimal human intervention, and 4) A novel method for mesh color sharpening using the discrete Laplace-Beltrami operator is proposed. Median and order statistics-based filters are widely used in signal processing and image processing because they can easily remove outlier noise and preserve important features. This dissertation demonstrates a wide range of results with median filter, vector median filter, fuzzy vector median filter, adaptive mean, adaptive median, and adaptive vector median filter on point cloud data. The experiments show that large-scale noise is removed while preserving important features of the point cloud with reasonable computation time. Quantitative criteria (e.g., complexity, Hausdorff distance, and the root mean squared error (RMSE)), as well as qualitative criteria (e.g., the perceived visual quality of the processed point cloud), are employed to assess the performance of the filters in various cases corrupted by different noisy models. The adaptive vector median is further optimized for denoising or ground filtering aerial LIDAR data point cloud. The adaptive vector median is also accelerated on multi-core CPUs using Microsoft Parallel Patterns Library. In addition, this dissertation presents a new method for mesh color sharpening using the discrete Laplace-Beltrami operator, which is an approximation of second order derivatives on irregular 3D meshes. The one-ring neighborhood is utilized to compute the Laplace-Beltrami operator. The color for each vertex is updated by adding the Laplace-Beltrami operator of the vertex color weighted by a factor to its original value. Different discretizations of the Laplace-Beltrami operator have been proposed for geometrical processing of 3D meshes. This work utilizes several discretizations of the Laplace-Beltrami operator for sharpening 3D mesh colors and compares their performance. Experimental results demonstrated the effectiveness of the proposed algorithms

    Outlier Detection for Shape Model Fitting

    Get PDF
    Medical image analysis applications often benefit from having a statistical shape model in the background. Statistical shape models are generative models which can generate shapes from the same family and assign a likelihood to the generated shape. In an Analysis-by-synthesis approach to medical image analysis, the target shape to be segmented, registered or completed must first be reconstructed by the statistical shape model. Shape models accomplish this by either acting as regression models, used to obtain the reconstruction, or as regularizers, used to limit the space of possible reconstructions. However, the accuracy of these models is not guaranteed for targets that lie out of the modeled distribution of the statistical shape model. Targets with pathologies are an example of out-of-distribution data. The target shape to be reconstructed has deformations caused by pathologies that do not exist on the healthy data used to build the model. Added and missing regions may lead to false correspondences, which act as outliers and influence the reconstruction result. Robust fitting is necessary to decrease the influence of outliers on the fitting solution, but often comes at the cost of decreased accuracy in the inlier region. Robust techniques often presuppose knowledge of outlier characteristics to build a robust cost function or knowledge of the correct regressed function to filter the outliers. This thesis proposes strategies to obtain the outliers and reconstruction simultaneously without previous knowledge about either. The assumptions are that a statistical shape model that represents the healthy variations of the target organ is available, and that some landmarks on the model reference that annotate locations with correspondence to the target exist. The first strategy uses an EM-like algorithm to obtain the sampling posterior. This is a global reconstruction approach that requires classical noise assumptions on the outlier distribution. The second strategy uses Bayesian optimization to infer the closed-form predictive posterior distribution and estimate a label map of the outliers. The underlying regression model is a Gaussian Process Morphable Model (GPMM). To make the reconstruction obtained through Bayesian optimization robust, a novel acquisition function is proposed. The acquisition function uses the posterior and predictive posterior distributions to avoid choosing outliers as next query points. The algorithms give as outputs a label map and a a posterior distribution that can be used to choose the most likely reconstruction. To obtain the label map, the first strategy uses Bayesian classification to separate inliers and outliers, while the second strategy annotates all query points as inliers and unused model vertices as outliers. The proposed solutions are compared to the literature, evaluated through their sensitivity and breakdown points, and tested on publicly available datasets and in-house clinical examples. The thesis contributes to shape model fitting to pathological targets by showing that: - performing accurate inlier reconstruction and outlier detection is possible without case-specific manual thresholds or input label maps, through the use of outlier detection. - outlier detection makes the algorithms agnostic to pathology type i.e. the algorithms are suitable for both sparse and grouped outliers which appear as holes and bumps, the severity of which influences the results. - using the GPMM-based sequential Bayesian optimization approach, the closed-form predictive posterior distribution can be obtained despite the presence of outliers, because the Gaussian noise assumption is valid for the query points. - using sequential Bayesian optimization instead of traditional optimization for shape model fitting brings forth several advantages that had not been previously explored. Fitting can be driven by different reconstruction goals such as speed, location-dependent accuracy, or robustness. - defining pathologies as outliers opens the door for general pathology segmentation solutions for medical data. Segmentation algorithms do not need to be dependent on imaging modality, target pathology type, or training datasets for pathology labeling. The thesis highlights the importance of outlier-based definitions of pathologies in medical data that are independent of pathology type and imaging modality. Developing such standards would not only simplify the comparison of different pathology segmentation algorithms on unlabeled datsets, but also push forward standard algorithms that are able to deal with general pathologies instead of data-driven definitions of pathologies. This comes with theoretical as well as clinical advantages. Practical applications are shown on shape reconstruction and labeling tasks. Publicly-available challenge datasets are used, one for cranium implant reconstruction, one for kidney tumor detection, and one for liver shape reconstruction. Further clinical applications are shown on in-house examples of a femur and mandible with artifacts and missing parts. The results focus on shape modeling but can be extended in future work to include intensity information and inner volume pathologies

    Methods for the acquisition and analysis of volume electron microscopy data

    Get PDF

    Investigating human-perceptual properties of "shapes" using 3D shapes and 2D fonts

    Get PDF
    Shapes are generally used to convey meaning. They are used in video games, films and other multimedia, in diverse ways. 3D shapes may be destined for virtual scenes or represent objects to be constructed in the real-world. Fonts add character to an otherwise plain block of text, allowing the writer to make important points more visually prominent or distinct from other text. They can indicate the structure of a document, at a glance. Rather than studying shapes through traditional geometric shape descriptors, we provide alternative methods to describe and analyse shapes, from a lens of human perception. This is done via the concepts of Schelling Points and Image Specificity. Schelling Points are choices people make when they aim to match with what they expect others to choose but cannot communicate with others to determine an answer. We study whole mesh selections in this setting, where Schelling Meshes are the most frequently selected shapes. The key idea behind image Specificity is that different images evoke different descriptions; but ‘Specific’ images yield more consistent descriptions than others. We apply Specificity to 2D fonts. We show that each concept can be learned and predict them for fonts and 3D shapes, respectively, using a depth image-based convolutional neural network. Results are shown for a range of fonts and 3D shapes and we demonstrate that font Specificity and the Schelling meshes concept are useful for visualisation, clustering, and search applications. Overall, we find that each concept represents similarities between their respective type of shape, even when there are discontinuities between the shape geometries themselves. The ‘context’ of these similarities is in some kind of abstract or subjective meaning which is consistent among different people

    Feature Driven Learning Techniques for 3D Shape Segmentation

    Get PDF
    Segmentation is a fundamental problem in 3D shape analysis and machine learning. The abil-ity to partition a 3D shape into meaningful or functional parts is a vital ingredient of many down stream applications like shape matching, classification and retrieval. Early segmentation methods were based on approaches like fitting primitive shapes to parts or extracting segmen-tations from feature points. However, such methods had limited success on shapes with more complex geometry. Observing this, research began using geometric features to aid the segmen-tation, as certain features (e.g. Shape Diameter Function (SDF)) are less sensitive to complex geometry. This trend was also incorporated in the shift to set-wide segmentations, called co-segmentation, which provides a consistent segmentation throughout a shape dataset, meaning similar parts have the same segment identifier. The idea of co-segmentation is that a set of same class shapes (i.e. chairs) contain more information about the class than a single shape would, which could lead to an overall improvement to the segmentation of the individual shapes. Over the past decade many different approaches of co-segmentation have been explored covering supervised, unsupervised and even user-driven active learning. In each of the areas, there has been widely adopted use of geometric features to aid proposed segmentation algorithms, with each method typically using different combinations of features. The aim of this thesis is to ex-plore these different areas of 3D shape segmentation, perform an analysis of the effectiveness of geometric features in these areas and tackle core issues that currently exist in the literature.Initially, we explore the area of unsupervised segmentation, specifically looking at co-segmentation, and perform an analysis of several different geometric features. Our analysis is intended to compare the different features in a single unsupervised pipeline to evaluate their usefulness and determine their strengths and weaknesses. Our analysis also includes several features that have not yet been explored in unsupervised segmentation but have been shown effective in other areas.Later, with the ever increasing popularity of deep learning, we explore the area of super-vised segmentation and investigate the current state of Neural Network (NN) driven techniques. We specifically observe limitations in the current state-of-the-art and propose a novel Convolu-tional Neural Network (CNN) based method which operates on multi-scale geometric features to gain more information about the shapes being segmented. We also perform an evaluation of several different supervised segmentation methods using the same input features, but with vary-ing complexity of model design. This is intended to see if the more complex models provide a significant performance increase.Lastly, we explore the user-driven area of active learning, to tackle the large amounts of inconsistencies in current ground truth segmentation, which are vital for most segmentation methods. Active learning has been used to great effect for ground truth generation in the past, so we present a novel active learning framework using deep learning and geometric features to assist the user in co-segmentation of a dataset. Our method emphasises segmentation accu-racy while minimising user effort, providing an interactive visualisation for co-segmentation analysis and the application of automated optimisation tools.In this thesis we explore the effectiveness of different geometric features across varying segmentation tasks, providing an in-depth analysis and comparison of state-of-the-art methods

    Geometric algorithms for cavity detection on protein surfaces

    Get PDF
    Macromolecular structures such as proteins heavily empower cellular processes or functions. These biological functions result from interactions between proteins and peptides, catalytic substrates, nucleotides or even human-made chemicals. Thus, several interactions can be distinguished: protein-ligand, protein-protein, protein-DNA, and so on. Furthermore, those interactions only happen under chemical- and shapecomplementarity conditions, and usually take place in regions known as binding sites. Typically, a protein consists of four structural levels. The primary structure of a protein is made up of its amino acid sequences (or chains). Its secondary structure essentially comprises -helices and -sheets, which are sub-sequences (or sub-domains) of amino acids of the primary structure. Its tertiary structure results from the composition of sub-domains into domains, which represent the geometric shape of the protein. Finally, the quaternary structure of a protein results from the aggregate of two or more tertiary structures, usually known as a protein complex. This thesis fits in the scope of structure-based drug design and protein docking. Specifically, one addresses the fundamental problem of detecting and identifying protein cavities, which are often seen as tentative binding sites for ligands in protein-ligand interactions. In general, cavity prediction algorithms split into three main categories: energy-based, geometry-based, and evolution-based. Evolutionary methods build upon evolutionary sequence conservation estimates; that is, these methods allow us to detect functional sites through the computation of the evolutionary conservation of the positions of amino acids in proteins. Energy-based methods build upon the computation of interaction energies between protein and ligand atoms. In turn, geometry-based algorithms build upon the analysis of the geometric shape of the protein (i.e., its tertiary structure) to identify cavities. This thesis focuses on geometric methods. We introduce here three new geometric-based algorithms for protein cavity detection. The main contribution of this thesis lies in the use of computer graphics techniques in the analysis and recognition of cavities in proteins, much in the spirit of molecular graphics and modeling. As seen further ahead, these techniques include field-of-view (FoV), voxel ray casting, back-face culling, shape diameter functions, Morse theory, and critical points. The leading idea is to come up with protein shape segmentation, much like we commonly do in mesh segmentation in computer graphics. In practice, protein cavity algorithms are nothing more than segmentation algorithms designed for proteins.Estruturas macromoleculares tais como as proteínas potencializam processos ou funções celulares. Estas funções resultam das interações entre proteínas e peptídeos, substratos catalíticos, nucleótideos, ou até mesmo substâncias químicas produzidas pelo homem. Assim, há vários tipos de interacções: proteína-ligante, proteína-proteína, proteína-DNA e assim por diante. Além disso, estas interações geralmente ocorrem em regiões conhecidas como locais de ligação (binding sites, do inglês) e só acontecem sob condições de complementaridade química e de forma. É também importante referir que uma proteína pode ser estruturada em quatro níveis. A estrutura primária que consiste em sequências de aminoácidos (ou cadeias), a estrutura secundária que compreende essencialmente por hélices e folhas , que são subsequências (ou subdomínios) dos aminoácidos da estrutura primária, a estrutura terciária que resulta da composição de subdomínios em domínios, que por sua vez representa a forma geométrica da proteína, e por fim a estrutura quaternária que é o resultado da agregação de duas ou mais estruturas terciárias. Este último nível estrutural é frequentemente conhecido por um complexo proteico. Esta tese enquadra-se no âmbito da conceção de fármacos baseados em estrutura e no acoplamento de proteínas. Mais especificamente, aborda-se o problema fundamental da deteção e identificação de cavidades que são frequentemente vistos como possíveis locais de ligação (putative binding sites, do inglês) para os seus ligantes (ligands, do inglês). De forma geral, os algoritmos de identificação de cavidades dividem-se em três categorias principais: baseados em energia, geometria ou evolução. Os métodos evolutivos baseiam-se em estimativas de conservação das sequências evolucionárias. Isto é, estes métodos permitem detectar locais funcionais através do cálculo da conservação evolutiva das posições dos aminoácidos das proteínas. Em relação aos métodos baseados em energia estes baseiam-se no cálculo das energias de interação entre átomos da proteína e do ligante. Por fim, os algoritmos geométricos baseiam-se na análise da forma geométrica da proteína para identificar cavidades. Esta tese foca-se nos métodos geométricos. Apresentamos nesta tese três novos algoritmos geométricos para detecção de cavidades em proteínas. A principal contribuição desta tese está no uso de técnicas de computação gráfica na análise e reconhecimento de cavidades em proteínas, muito no espírito da modelação e visualização molecular. Como pode ser visto mais à frente, estas técnicas incluem o field-of-view (FoV), voxel ray casting, back-face culling, funções de diâmetro de forma, a teoria de Morse, e os pontos críticos. A ideia principal é segmentar a proteína, à semelhança do que acontece na segmentação de malhas em computação gráfica. Na prática, os algoritmos de detecção de cavidades não são nada mais que algoritmos de segmentação de proteínas

    Computer Vision Problems in 3D Plant Phenotyping

    Get PDF
    In recent years, there has been significant progress in Computer Vision based plant phenotyping (quantitative analysis of biological properties of plants) technologies. Traditional methods of plant phenotyping are destructive, manual and error prone. Due to non-invasiveness and non-contact properties as well as increased accuracy, imaging techniques are becoming state-of-the-art in plant phenotyping. Among several parameters of plant phenotyping, growth analysis is very important for biological inference. Automating the growth analysis can result in accelerating the throughput in crop production. This thesis contributes to the automation of plant growth analysis. First, we present a novel system for automated and non-invasive/non-contact plant growth measurement. We exploit the recent advancements of sophisticated robotic technologies and near infrared laser scanners to build a 3D imaging system and use state-of-the-art Computer Vision algorithms to fully automate growth measurement. We have set up a gantry robot system having 7 degrees of freedom hanging from the roof of a growth chamber. The payload is a range scanner, which can measure dense depth maps (raw 3D coordinate points in mm) on the surface of an object (the plant). The scanner can be moved around the plant to scan from different viewpoints by programming the robot with a specific trajectory. The sequence of overlapping images can be aligned to obtain a full 3D structure of the plant in raw point cloud format, which can be triangulated to obtain a smooth surface (triangular mesh), enclosing the original plant. We show the capability of the system to capture the well known diurnal pattern of plant growth computed from the surface area and volume of the plant meshes for a number of plant species. Second, we propose a technique to detect branch junctions in plant point cloud data. We demonstrate that using these junctions as feature points, the correspondence estimation can be formulated as a subgraph matching problem, and better matching results than state-of-the-art can be achieved. Also, this idea removes the requirement of a priori knowledge about rotational angles between adjacent scanning viewpoints imposed by the original registration algorithm for complex plant data. Before, this angle information had to be approximately known. Third, we present an algorithm to classify partially occluded leaves by their contours. In general, partial contour matching is a NP-hard problem. We propose a suboptimal matching solution and show that our method outperforms state-of-the-art on 3 public leaf datasets. We anticipate using this algorithm to track growing segmented leaves in our plant range data, even when a leaf becomes partially occluded by other plant matter over time. Finally, we perform some experiments to demonstrate the capability and limitations of the system and highlight the future research directions for Computer Vision based plant phenotyping

    Automated Fragmentary Bone Matching

    Get PDF
    Identification, reconstruction and matching of fragmentary bones are basic tasks required to accomplish quantification and analysis of fragmentary human remains derived from forensic contexts. Appropriate techniques for three-dimensional surface matching have received great attention in computer vision literature, and various methods have been proposed for matching fragmentary meshes; however, many of these methods lack automation, speed and/or suffer from high sensitivity to noise. In addition, reconstruction of fragementary bones along with identification in the presence of reference model to compare with in an automatic scheme have not been addressed. In order to address these issues, we used a multi-stage technique for fragment identification, matching and registration. The study introduces an automated technique for matching of fragmentary human skeletal remains for improving forensic anthropology practice and policy. The proposed technique involves creation of surfaces models for the fragmentary elements which can be done using computerized tomographic scans followed by segmentation. Upon creation of the fragmentary elements models, the models go through feature extraction technique where the surface roughness map of each model is measured using local shape analysis measures. Adaptive thesholding is then used to extract model features. A multi-stage technique is then used to identify, match and register bone fragments to their corresponding template bone model. First, extracted features are used for matching with different template bone models using iterative closest point algorithm with different positions and orientations. The best match score, in terms of minimum root-mean-square error, is used along with the position and orientation and the resulting transformation to register the fragment bone model with the corresponding template bone model using iterative closest point algorithm
    corecore