179 research outputs found

    A 180nm CMOS Capacitorless Low Drop-Out Regulator for Battery-operated System

    Get PDF
    This paper presents a fully-integrated 180nm CMOS low drop-out regulator based on a simple telescopic cascode-compensated amplifier driving a PMOS pass-device. It provides a high precision 1.8V output voltage for battery voltages from 3.6V to 1.93V up to a 50mA load current with only 22μA quiescent current

    A fully-integrated 180 nm CMOS 1.2 V low-dropout regulator for low-power portable applications

    Get PDF
    This paper presents the design and postlayout simulation results of a capacitor-less low dropout (LDO) regulator fully integrated in a low-cost standard 180 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology which regulates the output voltage at 1.2 V from a 3.3 to 1.3 V battery over a -40 to 120 degrees C temperature range. To meet with the constraints of system-on-chip (SoC) battery-operated devices, ultralow power (I-q = 8.6 mu A) and minimum area consumption (0.109 mm(2)) are maintained, including a reference voltage V-ref = 0.4 V. It uses a high-gain dynamically biased folded-based error amplifier topology optimized for low-voltage operation that achieves an enhanced regulation-fast transient performance trade-off

    Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

    Get PDF
    A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a manner modelled by a step down transformer. With this methodology, power harvesting for an implantable device is realized with the use of a large primary coil external to the subject, and a smaller secondary coil integrated into the implant. The signal received from the secondary coil must be regulated to provide a stable direct current (DC) power supply, which will be used to power the electronics in the implantable device. The focus of this work is on development of an electronic front-end for wireless powering of an implantable biomedical device. The energy harvesting front-end circuit is comprised of a rectifier, LDO regulator, and a temperature insensitive voltage reference. Physical design of the front-end circuit is developed in 0.13um CMOS technology with careful attention to analog layout issues. Post-layout simulation results are presented for each sub-block as well as the full front-end structure. The LDO regulator operates with supply voltages in the range of 1V to 1.5V with quiescent current of 10.5uA The complete power receiver front-end has a power conversion efficiency of up to 29%

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Vidutinių dažnių 5G belaidžių tinklų galios stiprintuvų tyrimas

    Get PDF
    This dissertation addresses the problems of ensuring efficient radio fre-quency transmission for 5G wireless networks. Taking into account, that the next generation 5G wireless network structure will be heterogeneous, the device density and their mobility will increase and massive MIMO connectivity capability will be widespread, the main investigated problem is formulated – increasing the efficiency of portable mid-band 5G wireless network CMOS power amplifier with impedance matching networks. The dissertation consists of four parts including the introduction, 3 chapters, conclusions, references and 3 annexes. The investigated problem, importance and purpose of the thesis, the ob-ject of the research methodology, as well as the scientific novelty are de-fined in the introduction. Practical significance of the obtained results, defended state-ments and the structure of the dissertation are also included. The first chapter presents an extensive literature analysis. Latest ad-vances in the structure of the modern wireless network and the importance of the power amplifier in the radio frequency transmission chain are de-scribed in detail. The latter is followed by different power amplifier archi-tectures, parameters and their improvement techniques. Reported imped-ance matching network design methods are also discussed. Chapter 1 is concluded distinguishing the possible research vectors and defining the problems raised in this dissertation. The second chapter is focused around improving the accuracy of de-signing lumped impedance matching network. The proposed methodology of estimating lumped inductor and capacitor parasitic parameters is dis-cussed in detail provi-ding complete mathematical expressions, including a summary and conclusions. The third chapter presents simulation results for the designed radio fre-quency power amplifiers. Two variations of Doherty power amplifier archi-tectures are presented in the second part, covering the full step-by-step de-sign and simulation process. The latter chapter is concluded by comparing simulation and measurement results for all designed radio frequency power amplifiers. General conclusions are followed by an extensive list of references and a list of 5 publications by the author on the topic of the dissertation. 5 papers, focusing on the subject of the discussed dissertation, have been published: three papers are included in the Clarivate Analytics Web of Sci-ence database with a citation index, one paper is included in Clarivate Ana-lytics Web of Science database Conference Proceedings, and one paper has been published in unreferred international conference preceedings. The au-thor has also made 9 presentations at 9 scientific conferences at a national and international level.Dissertatio

    A Ringamp-Assisted, Output Capacitor-less Analog CMOS Low-Dropout Voltage Regulator

    Get PDF
    Continued advancements in state-of-the-art integrated circuits have furthered trends toward higher computational performance and increased functionality within smaller circuit area footprints, all while improving power efficiencies to meet the demands of mobile and battery-powered applications. A significant portion of these advancements have been enabled by continued scaling of CMOS technology into smaller process node sizes, facilitating faster digital systems and power optimized computation. However, this scaling has degraded classic analog amplifying circuit structures with reduced voltage headroom and lower device output resistance; and thus, lower available intrinsic gain. This work investigates these trends and their impact for fine-grain Low-Dropout (LDO) Voltage Regulators, leading to a presented design methodology and implementation of a state-of-the-art Ringamp-Assisted, Output Capacitor-less Analog CMOS LDO Voltage Regulator capable of both power scaling and process node scaling for general SoC applications

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    Integrated reference circuits for low-power capacitive sensor interfaces

    Get PDF
    This thesis consists of nine publications and an overview of the research topic, which also summarizes the work. The research described in this thesis concentrates on the design of low-power sensor interfaces for capacitive 3-axis micro-accelerometers. The primary goal throughout the thesis is to optimize power dissipation. Because the author made the main contribution to the design of the reference and power management circuits required, the overview part is dominated by the following research topics: current, voltage, and temperature references, frequency references, and voltage regulators. After an introduction to capacitive micro-accelerometers, the work describes the typical integrated readout electronics of a capacitive sensor on the functional level. The readout electronics can be divided into four different functional parts, namely the sensor readout itself, signal post-processing, references, and power management. Before the focus is shifted to the references and further to power management, different ways to realize the sensor readout are briefly discussed. Both current and voltage references are required in most analog and mixed-signal systems. A bandgap voltage reference, which inherently uses at least one current reference, is practical for the generation of an accurate reference voltage. Very similar circuit techniques can be exploited when implementing a temperature reference, the need for which in the sensor readout may be justified by the temperature compensation, for example. The work introduces non-linear frequency references, namely ring and relaxation oscillators, which are very suitable for the generation of the relatively low-frequency clock signals typically needed in the sensor interfaces. Such oscillators suffer from poor jitter and phase noise performance, the quantities of which also deserve discussion in this thesis. Finally, the regulation of the supply voltage using linear regulators is considered. In addition to extending the battery life by providing a low quiescent current, the regulator must be able to supply very low load currents and operate without off-chip capacitors

    Low Power DC-DC Converters and a Low Quiescent Power High PSRR Class-D Audio Amplifier

    Get PDF
    High-performance DC-DC voltage converters and high-efficient class-D audio amplifiers are required to extend battery life and reduce cost in portable electronics. This dissertation focuses on new system architectures and design techniques to reduce area and minimize quiescent power while achieving high performance. Experimental results from prototype circuits to verify theory are shown. Firstly, basics on low drop-out (LDO) voltage regulators are provided. Demand for system-on-chip solutions has increased the interest in LDO voltage regulators that do not require a bulky off-chip capacitor to achieve stability, also called capacitor- less LDO (CL-LDO) regulators. Several architectures have been proposed; however, comparing these reported architectures proves difficult, as each has a distinct process technology and specifications. This dissertation compares CL-LDOs in a unified manner. Five CL-LDO regulator topologies were designed, fabricated, and tested under common design conditions. Secondly, fundamentals on DC-DC buck converters are presented and area reduction techniques for the external output filter, power stage, and compensator are proposed. A fully integrated buck converter using standard CMOS technology is presented. The external output filter has been fully-integrated by increasing the switching frequency up to 45 MHz. Moreover, a monolithic single-input dual-output buck converter is proposed. This architecture implements only three switches instead of the four switches used in conventional solutions, thus potentially reducing area in the power stage through proper design of the power switches. Lastly, a monolithic PWM voltage mode buck converter with compact Type-III compensation is proposed. This compensation scheme employs a combination of Gm-RC and Active-RC techniques to reduce the area of the compensator, while maintaining low quiescent power consumption and fast transient response. The proposed compensator reduces area by more than 45% when compared to an equivalent conventional Type-III compensator. Finally, basics on class-D audio amplifiers are presented and a clock-free current controlled class-D audio amplifier using integral sliding mode control is proposed. The proposed amplifier achieves up to 82 dB of power supply rejection ratio and a total harmonic distortion plus noise as low as 0.02%. The IC prototype’s controller consumes 30% less power than those featured in recently published works

    Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Get PDF
    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study
    corecore