2,794 research outputs found

    Neutrosophic Hough Transform

    Get PDF
    Hough transform (HT) is a useful tool for both pattern recognition and image processing communities. In the view of pattern recognition, it can extract unique features for description of various shapes, such as lines, circles, ellipses, and etc. In the view of image processing, a dozen of applications can be handled with HT, such as lane detection for autonomous cars, blood cell detection in microscope images, and so on. As HT is a straight forward shape detector in a given image, its shape detection ability is low in noisy images. To alleviate its weakness on noisy images and improve its shape detection performance, in this paper, we proposed neutrosophic Hough transform (NHT). As it was proved earlier, neutrosophy theory based image processing applications were successful in noisy environments. To this end, the Hough space is initially transferred into the NS domain by calculating the NS membership triples (T, I, and F). An indeterminacy filtering is constructed where the neighborhood information is used in order to remove the indeterminacy in the spatial neighborhood of neutrosophic Hough space. The potential peaks are detected based on thresholding on the neutrosophic Hough space, and these peak locations are then used to detect the lines in the image domain. Extensive experiments on noisy and noise-free images are performed in order to show the efficiency of the proposed NHT algorithm. We also compared our proposed NHT with traditional HT and fuzzy HT methods on variety of images. The obtained results showed the efficiency of the proposed NHT on noisy images

    Automated extraction of chemical structure information from digital raster images

    Get PDF
    Background: To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results: This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader -- a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion: The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links to scientific research articles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90875/1/Saitou8.pd

    Estimation of the Handwritten Text Skew Based on Binary Moments

    Get PDF
    Binary moments represent one of the methods for the text skew estimation in binary images. It has been used widely for the skew identification of the printed text. However, the handwritten text consists of text objects, which are characterized with different skews. Hence, the method should be adapted for the handwritten text. This is achieved with the image splitting into separate text objects made by the bounding boxes. Obtained text objects represent the isolated binary objects. The application of the moment-based method to each binary object evaluates their local text skews. Due to the accuracy, estimated skew data can be used as an input to the algorithms for the text line segmentation

    Do-It-Yourself Single Camera 3D Pointer Input Device

    Full text link
    We present a new algorithm for single camera 3D reconstruction, or 3D input for human-computer interfaces, based on precise tracking of an elongated object, such as a pen, having a pattern of colored bands. To configure the system, the user provides no more than one labelled image of a handmade pointer, measurements of its colored bands, and the camera's pinhole projection matrix. Other systems are of much higher cost and complexity, requiring combinations of multiple cameras, stereocameras, and pointers with sensors and lights. Instead of relying on information from multiple devices, we examine our single view more closely, integrating geometric and appearance constraints to robustly track the pointer in the presence of occlusion and distractor objects. By probing objects of known geometry with the pointer, we demonstrate acceptable accuracy of 3D localization.Comment: 8 pages, 6 figures, 2018 15th Conference on Computer and Robot Visio
    corecore