25,712 research outputs found

    Gallium arsenide quantum well-based far infrared array radiometric imager

    Get PDF
    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost

    On design studies for the future 50 GeV arrays of imaging air Cherenkov telescopes

    Get PDF
    Arrays of imaging air Cherenkov telescopes (IACTs) like VERITAS, HESS have been recently proposed as the instruments of the next generation for ground based very high energy gamma-ray astronomy invading into 50-100 GeV energy range. Here we present results of design studies for the future IACT arrays which have been performed by means of Monte Carlo simulations. We studied different trigger strategies, abilities of cosmic ray rejection for arrays of 4 and 16 telescopes with 10 m reflectors, equipped with cameras comprising 271 and 721 pixels of 0.25 and 0.15 degree, respectively. The comparative analysis of the performance of such telescope arrays has been done for both camera options, providing almost the same field of view of 4.3 degree. An important issue is the choice of the optimum spacing between the telescopes in such an array. In order to maximize the signal-to-noise ratio in observations at the small zenith angles of 20 degree as well as at large zenith angles of 60 degree, different arrangements of IACT array have been examined. Finally, we present a major recommendations regarding the optimum configuration.Comment: 5 pages, presented at the VERITAS Workshop on TeV Astrophysics of Extragalactic Sources, eds. M. Catanese, J. Quinn, and T. Weekes, to be published in Astroparticle Physic

    CASTER - a concept for a Black Hole Finder Probe based on the use of new scintillator technologies

    Get PDF
    The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10--600 keV energy band, a spectral range that is considered to be especially useful in the detection of black hole sources. The development of new inorganic scintillator materials provides improved performance (for example, with regards to energy resolution and timing) that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology.Comment: 12 pages; conference paper presented at the SPIE conference "UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV." To be published in SPIE Conference Proceedings, vol. 589

    VERITAS: the Very Energetic Radiation Imaging Telescope Array System

    Get PDF
    The Very Energetic Radiation Imaging Telescope Array System (VERITAS) represents an important step forward in the study of extreme astrophysical processes in the universe. It combines the power of the atmospheric Cherenkov imaging technique using a large optical reflector with the power of stereoscopic observatories using arrays of separated telescopes looking at the same shower. The seven identical telescopes in VERITAS, each of aperture 10 m, will be deployed in a filled hexagonal pattern of side 80 m; each telescope will have a camera consisting of 499 pixels with a field of view of 3.5 deg VERITAS will substantially increase the catalog of very high energy (E > 100GeV) gamma-ray sources and greatly improve measurements of established sources.Comment: 44 pages, 16 figure

    CASTER: a scintillator-based black hole finder probe

    Get PDF
    The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10-600 keV energy band, a spectral range that is considered to be especially useful in the detection of black hole sources. The development of new inorganic scintillator materials provides improved performance (for example, with regards to energy resolution and timing) that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology
    corecore