8,992 research outputs found

    Production of High-Intensity, Highly Charged Ions

    Full text link
    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now represent the most effective and reliable machines for modern accelerators.Comment: 42 pages, contribution to the CAS-CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, edited by R. Baile

    Issues in the design of switched linear systems : a benchmark study

    Get PDF
    In this paper we present a tutorial overview of some of the issues that arise in the design of switched linear control systems. Particular emphasis is given to issues relating to stability and control system realisation. A benchmark regulation problem is then presented. This problem is most naturally solved by means of a switched control design. The challenge to the community is to design a control system that meets the required performance specifications and permits the application of rigorous analysis techniques. A simple design solution is presented and the limitations of currently available analysis techniques are illustrated with reference to this example

    Sampling from a system-theoretic viewpoint: Part II - Noncausal solutions

    Get PDF
    This paper puts to use concepts and tools introduced in Part I to address a wide spectrum of noncausal sampling and reconstruction problems. Particularly, we follow the system-theoretic paradigm by using systems as signal generators to account for available information and system norms (L2 and L∞) as performance measures. The proposed optimization-based approach recovers many known solutions, derived hitherto by different methods, as special cases under different assumptions about acquisition or reconstructing devices (e.g., polynomial and exponential cardinal splines for fixed samplers and the Sampling Theorem and its modifications in the case when both sampler and interpolator are design parameters). We also derive new results, such as versions of the Sampling Theorem for downsampling and reconstruction from noisy measurements, the continuous-time invariance of a wide class of optimal sampling-and-reconstruction circuits, etcetera

    Using Effective Generator Impedance for Forced Oscillation Source Location

    Full text link
    Locating the sources of forced low-frequency oscillations in power systems is an important problem. A number of proposed methods demonstrate their practical usefulness, but many of them rely on strong modeling assumptions and provide poor performance in certain cases for reasons still not well understood. This paper proposes a systematic method for locating the source of a forced oscillation by considering a generator's response to fluctuations of its terminal voltages and currents. It is shown that a generator can be represented as an effective admittance matrix with respect to low-frequency oscillations, and an explicit form for this matrix, for various generator models, is derived. Furthermore, it is shown that a source generator, in addition to its effective admittance, is characterized by the presence of an effective current source thus giving a natural qualitative distinction between source and nonsource generators. Detailed descriptions are given of a source detection procedure based on this developed representation, and the method's effectiveness is confirmed by simulations on the recommended testbeds (eg. WECC 179-bus system). This method is free of strong modeling assumptions and is also shown to be robust in the presence of measurement noise and generator parameter uncertainty.Comment: 13 page

    DEFROST: A New Code for Simulating Preheating after Inflation

    Full text link
    At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. This paper presents a new code for simulating scalar field dynamics in expanding universe written for that purpose. Compared to available alternatives, it significantly improves both the speed and the accuracy of calculations, and is fully instrumented for 3D visualization. We reproduce previously published results on preheating in simple chaotic inflation models, and further investigate non-linear dynamics of the inflaton decay. Surprisingly, we find that the fields do not want to thermalize quite the way one would think. Instead of directly reaching equilibrium, the evolution appears to be stuck in a rather simple but quite inhomogeneous state. In particular, one-point distribution function of total energy density appears to be universal among various two-field preheating models, and is exceedingly well described by a lognormal distribution. It is tempting to attribute this state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Sampling from a system-theoretic viewpoint

    Get PDF
    This paper studies a system-theoretic approach to the problem of reconstructing an analog signal from its samples. The idea, borrowed from earlier treatments in the control literature, is to address the problem as a hybrid model-matching problem in which performance is measured by system norms. \ud \ud The paper is split into three parts. In Part I we present the paradigm and revise the lifting technique, which is our main technical tool. In Part II optimal samplers and holds are designed for various analog signal reconstruction problems. In some cases one component is fixed while the remaining are designed, in other cases all three components are designed simultaneously. No causality requirements are imposed in Part II, which allows to use frequency domain arguments, in particular the lifted frequency response as introduced in Part I. In Part III the main emphasis is placed on a systematic incorporation of causality constraints into the optimal design of reconstructors. We consider reconstruction problems, in which the sampling (acquisition) device is given and the performance is measured by the L2L^2-norm of the reconstruction error. The problem is solved under the constraint that the optimal reconstructor is ll-causal for a given l0,l\geq 0, i.e., that its impulse response is zero in the time interval (,lh),(-\infty,-l h), where hh is the sampling period. We derive a closed-form state-space solution of the problem, which is based on the spectral factorization of a rational transfer function
    corecore