14,625 research outputs found

    Radiative Efficiencies of Continuously Powered Blast Waves

    Full text link
    We use general arguments to show that a continuously powered radiative blast wave can behave self similarly if the energy injection and radiation mechanisms are self similar. In that case, the power-law indices of the blast wave evolution are set by only one of the two constituent physical mechanisms. If the luminosity of the energy source drops fast enough, the radiation mechanisms set the power-law indices, otherwise, they are set by the behavior of the energy source itself. We obtain self similar solutions for the Newtonian and the ultra-relativistic limits. Both limits behave self similarly if we assume that the central source supplies energy in the form of a hot wind, and that the radiative mechanism is the semi-radiative mechanism of Cohen, Piran & Sari (1998). We calculate the instantaneous radiative efficiencies for both limits and find that a relativistic blast wave has a higher efficiency than a Newtonian one. The instantaneous radiative efficiency depends strongly on the hydrodynamics and cannot be approximated by an estimate of local microscopic radiative efficiencies, since a fraction of the injected energy is deposited in shocked matter. These solutions can be used to calculate Gamma Ray Bursts afterglows, for cases in which the energy is not supplied instantaneously.Comment: 28 LaTeX pages, including 9 figures and 3 table

    Scaling of Magneto-Quantum-Radiative Hydrodynamic Equations: From Laser-produced Plasmas to Astrophysics

    Get PDF
    We introduce here the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of all the characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.Comment: 12 page

    Formation of Primordial Protostars

    Get PDF
    The evolution of collapsing metal free protostellar clouds is investigated for various masses and initial conditions. We perform hydrodynamical calculations for spherically symmetric clouds taking account of radiative transfer of the molecular hydrogen lines and the continuum, as well as of chemistry of the molecular hydrogen. The collapse is found to proceed almost self-similarly like Larson-Penston similarity solution. In the course of the collapse, efficient three-body processes transform atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular form. However, hydrogen in the outer part remains totally atomic although there is an intervening transitional layer of several solar masses, where hydrogen is in partially molecular form. No opaque transient core is formed although clouds become optically thick to H2_{2} collision-induced absorption continuum, since H2_{2} dissociation follows successively. When the central part of the cloud reaches stellar densities (∼10−2gcm−3\sim 10^{-2} {\rm g cm^{-3}}), a very small hydrostatic core (\sim 5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the ambient gas accretes onto it. The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun} {\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where M∗M_{\ast} is instantaneous mass of the central core, by using a similarity solution which reproduces the evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe

    An interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations

    Get PDF
    Time-dependent fluctuations in the catalysis rate ({delta}k(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion {delta}{omega}0(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy ({delta}E(t)) as a contributor to {delta}k(t) and relate the latter to {delta}{omega}0(t). The resulting relation between {delta}k(t) and {delta}{omega}0(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated {delta}E(t) on fluctuations in the radiative component ({delta}{gamma}Formula(t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between {delta}{gamma}Formula(t) and {delta}{omega}0(t) is obtained. Experimental tests will determine whether the correlation functions for {delta}k(t), {delta}{omega}0(t), and {delta}{gamma}Formula are indeed similar for any enzyme. Measurements of dielectric dispersion, {varepsilon}({omega}), for the enzyme discussed elsewhere will provide further insight into the correlation function for {delta}E(t). They also will determine whether fluctuations in the nonradiative component {gamma}Formula of the lifetime decay has a different origin, fluctuations in distance for example

    Dynamics of a gas containing small solid particles

    Get PDF
    N/
    • …
    corecore