3 research outputs found

    Energy conservation issues in the numerical solution of the semilinear wave equation

    Get PDF
    In this paper we discuss energy conservation issues related to the numerical solution of the nonlinear wave equation. As is well known, this problem can be cast as a Hamiltonian system that may be autonomous or not, depending on the specific boundary conditions at hand. We relate the conservation properties of the original problem to those of its semi-discrete version obtained by the method of lines. Subsequently, we show that the very same properties can be transferred to the solutions of the fully discretized problem, obtained by using energy-conserving methods in the HBVMs (Hamiltonian Boundary Value Methods) class. Similar arguments hold true for different types of Hamiltonian Partial Differential Equations, e.g., the nonlinear Schr\"odinger equation.Comment: 41 pages, 11 figur

    Symplectic Schemes for Linear Stochastic Schrödinger Equations with Variable Coefficients

    Get PDF
    This paper proposes a kind of symplectic schemes for linear Schrödinger equations with variable coefficients and a stochastic perturbation term by using compact schemes in space. The numerical stability property of the schemes is analyzed. The schemes preserve a discrete charge conservation law. They also follow a discrete energy transforming formula. The numerical experiments verify our analysis
    corecore