4,721 research outputs found

    HIGH-LEVEL SYNTHESIS OF ELASTICITY: FROM MODELS TO CIRCUITS

    Get PDF

    The continuous rise of bulges out of galactic disks

    Full text link
    (abridged) This study revolves around dmB, a new distance- and extinction-independent measure of the contribution by stellar populations older than 9 Gyr to the mean r-band surface brightness of the bulge component in 135 late-type galaxies (LTGs) from the CALIFA survey, spanning a range of 2.6 dex and 3 dex in total and bulge stellar mass (M*T~10^(8.9-11.5) M_solar and M*B~10^(8.3-11.3) M_solar, respectively). The main insight from this study is that LTG bulges form a continuous sequence of increasing dmB with increasing M*T, M*B, stellar mass surface density S* and mass-weighted age and metallicity: high-dmB bulges are the oldest, densest and most massive ones, and vice versa. Furthermore, we find that the bulge-to-disk age and metallicity contrast, as well as the bulge-to-disk mass ratio increase with M*T, raising from, respectively, ~0 Gyr, 0 dex and 0.25 to ~3 Gyr, ~0.3 dex and 0.67 across the mass range covered by our sample. Whereas gas excitation in lower-mass bulges is invariably dominated by star formation (SF), LINER- and Seyfert-specific emission-line ratios were exclusively documented in high-mass, high-S* bulges. The continuity both in the properties of LTG bulges themselves and in their age and metallicity contrast to their parent disks suggests that these components evolve alongside in a concurrent process that leads to a continuum of physical and evolutionary characteristics. Our results are consistent with a picture where bulge growth in LTGs is driven by a superposition of quick-early and slow-secular processes, the relative importance of which increases with M*T. These processes, which presumably combine in situ SF in the bulge and inward migration of material from the disk, are expected to lead to a non-homologous radial growth of S* and a trend for an increasing Sersic index with increasing galaxy mass.Comment: 24 pages, accepted for publication in A&

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Neuro-fuzzy chip to handle complex tasks with analog performance

    Get PDF
    This paper presents a mixed-signal neuro-fuzzy controller chip which, in terms of power consumption, input–output delay, and precision, performs as a fully analog implementation. However, it has much larger complexity than its purely analog counterparts. This combination of performance and complexity is achieved through the use of a mixed-signal architecture consisting of a programmable analog core of reduced complexity, and a strategy, and the associated mixed-signal circuitry, to cover the whole input space through the dynamic programming of this core. Since errors and delays are proportional to the reduced number of fuzzy rules included in the analog core, they are much smaller than in the case where the whole rule set is implemented by analog circuitry. Also, the area and the power consumption of the new architecture are smaller than those of its purely analog counterparts simply because most rules are implemented through programming. The Paper presents a set of building blocks associated to this architecture, and gives results for an exemplary prototype. This prototype, called multiplexing fuzzy controller (MFCON), has been realized in a CMOS 0.7 um standard technology. It has two inputs, implements 64 rules, and features 500 ns of input to output delay with 16-mW of power consumption. Results from the chip in a control application with a dc motor are also provided
    • …
    corecore