495 research outputs found

    Recent Trends in Printed Ultra-Wideband (UWB) Antennas

    Get PDF

    Imaging of buried utilities by ultra wideband sensory systems

    Get PDF
    Third-party damage to the buried infrastructure like natural gas pipelines, water distribution pipelines and fiber optic cables are estimated at 10billionannuallyacrosstheUS.Also,theneededinvestmentinupgradingourwaterandwastewaterinfrastructureoverthenext20yearsisestimatedbyEnvironmentalProtectionAgency(EPA)at10 billion annually across the US. Also, the needed investment in upgrading our water and wastewater infrastructure over the next 20 years is estimated by Environmental Protection Agency (EPA) at 400 billion, however, non-destructive condition assessment technologies capable of providing quantifiable data regarding the structural integrity of our buried assets in a cost-effective manner are lacking. Both of these areas were recently identified several U.S. federal agencies as \u27critical national need\u27. In this research ultra wideband (UWB) time-domain radar technology was adopted in the development of sensory systems for the imaging of buried utilities, with focus on two key applications. The first was the development of a sensory system for damage avoidance of buried pipes and conduits during excavations. A sensory system which can be accommodated within common excavator buckets was designed, fabricated and subjected to laboratory and full-scale testing. The sensor is located at the cutting edge (teeth), detecting the presence of buried utilities ahead of the cutting teeth. That information can be used to alert the operator in real-time, thus avoiding damage to the buried utility. The second application focused on a sensory system that is capable of detecting structural defects within the wall of buried structures as well as voids in the soil-envelope encasing the structure. This ultra wideband sensory system is designed to be mounted on the robotic transporter that travels within the pipeline while collecting data around the entire circumference. The proposed approach was validated via 3-D numerical simulation as well as full-scale experimental testing

    An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and Sub-THz Applications

    Get PDF
    The millimeter-wave (mmWave) and sub-terahertz (sub-THz) bands have received much attention in recent years for wireless communication and high-resolution imaging radar applications. The objective of this paper is to provide an overview of recent developments in the design and technical implementation of GW-based antenna systems and components. This paper begins by comparing the GW-transmission line to other widely used transmission lines for the mmWave and sub-THz bands. Furthermore, the basic operating principle and possible implementation technique of the GW-technology are briefly discussed. In addition, various antennas and passive components have been developed based on the GW-technology. Despite its advantages in controlling electromagnetic wave propagation, it is also widely used for the packaging of electronic components such as transceivers and power amplifiers. This article also provided an overview of the current manufacturing technologies that are commonly used for the fabrication of GW-components. Finally, the practical applications and industry interest in GW technology developments for mmWave and sub-THz applications have been scrutinized.Funding Agencies|European Union - Marie Sklodowska-Curie [766231WAVECOMBEH2020-MSCA-ITN-2017]</p

    Configuration study for a 30 GHz monolithic receive array, volume 1

    Get PDF
    Gregorian, Cassegrain, and single reflector systems were analyzed in configuration studies for communications satellite receive antennas. Parametric design and performance curves were generated. A preliminary design of each reflector/feed system was derived including radiating elements, beam-former network, beamsteering system, and MMIC module architecture. Performance estimates and component requirements were developed for each design. A recommended design was selected for both the scanning beam and the fixed beam case. Detailed design and performance analysis results are presented for the selected Cassegrain configurations. The final design point is characterized in detail and performance measures evaluated in terms of gain, sidelobe level, noise figure, carrier-to-interference ratio, prime power, and beamsteering. The effects of mutual coupling and excitation errors (including phase and amplitude quantization errors) are evaluated. Mechanical assembly drawings are given for the final design point. Thermal design requirements are addressed in the mechanical design

    Analysis and design of antennas and radiometers for radio astronomy applications in microwave, Mm-wave, and THz Bands

    Get PDF
    Mención Internacional en el título de doctorWe are living in interesting times for astronomy science, since the birth of the radio astronomy field in the 20th century by Karl Jansky, the availability of new and better radio astronomy receivers is in increasing demand to push the human understanding of the universe. In this thesis, various components (antennas, baluns, antenna-arrays, and radiometers) are proposed for radio astronomy receivers. The proposed designs are belonging to three receiver topologies (direct detection, down-conversion, and up-conversion) that operate at different frequency bands from MHz up to a few of THz. Also, to demonstrate that the same proposed design is capable of working efficiently at different operating frequencies, multiple adjusted designs are presented for several practical radio astronomy and space applications. Firstly, a receiver based on the direct detection of the Electromagnetic (EM) radiation through a radio telescope working on cryogenic cooling conditions. In this part, the focus is on designing conical log-spiral antennas and baluns (balanced to unbalanced transformers) to be used as feeds for VLBI Global Observing System (VGOS) ground-based radio telescopes. The feeds cover the Ultrawideband (UWB) from 2 GHz to 14 GHz with Circular Polarization (CP) radiation and stable radiation patterns. After integration of the feeds to the radio telescope, the whole system operates with high aperture efficiency and high System Equivalent Flux Density (SEFD) over the whole required wide range. The fabrication, assembly, and measurements for single-element and four-elements array are provided for achieving the requirements for single CP and dual CP operation. Also, in the same first part, the proposed single-element feed (antenna + balun) is readjusted for being used for CryoRad spaceborne Earth observations. This feed has a single CP over low-frequency UWB from 400MHz to 2 GHz with low weight and physical size compared to standard horn feeds. The second part of the thesis is dedicated to a THz source to be used as a local oscillator for heterodyne radio astronomy THz receivers in which the down-conversion of the THz radiation to a lower frequency occurs. The source is based on an array of self-complementary bow-tie antennas and photomixers that lies on a dielectric lens. The source can be scaled easily to cover different UWB ranges, three ranges are analyzed from 200 GHz to 2 THz, 100 GHz to 1 THz, and 50 GHz to 0.5 THz. Additionally, in this part, a complete study for the effects of metal losses on such THz planar antennas is performed which are not well-investigated in literature yet, the physical explanations behind such effects are also provided. Although these proposed THz sources themselves can work at room temperature, the receiver probably still needs the cooling for the other receiver components (such as the mixer) to work efficiently at such high frequencies. This is the motivation for the third part of this thesis which presents a different type of radio astronomy receiver that is completely able to work without cooling. The third receiver is based on the nonlinear up-converting of the microwave radiation into the optical domain using Whispering Gallery Mode (WGM) resonators which can work at room temperature efficiently. For such advantage and since this concept is naturally narrow-band, it can be a proper candidate for Cosmic Microwave Background (CMB) spectroscopy and space applications. The system design and its performance are analyzed for Ku band at 12 GHz with proposing a novel microwave coupling scheme for enhancing the up-conversion photonic efficiency which is the main limitation for such upconversion systems. Likewise, several high gain 3D-printed Dielectric Resonator Antenna (DRA)s are proposed in both isolated and array configurations to have a direct coupling of the microwave radiation to the proposed scheme. Another practical application for such receiver is presented for CubeSat missions at the mm-wave band (183 GHz) for climate change forecasting. It is clear here that removing the cryogenic cooling conditions decreases satellite weight and cost, which in turn significantly increases its lifetime. Also, it is worth noting that besides the radio astronomy applications, the proposed receivers (and/or their antenna/components) can be used for many other applications. For example, the UWB antennas in the first part can be used as wideband scalable probes for EM compatibility testing or other wireless systems that require single or dual CP such as radar and military applications. This is because the solutions provide constant beam characteristics with good CP polarization purity and stable performance over the operating UWB. In the same way, the proposed THz source in the second part can be used in several THz applications such as very high-speed wireless communications, highresolution imaging for medical and security purposes. This is because of its key benefits as decade bandwidth, compact size, low noise, low power demand, high tunability, and the ability to work at room temperature. For the up-conversion scheme proposed in the third part, due to its high photonic efficiency, low noise level which enables it to work at room temperature, and its scalability from a few GHz up to several THz, it is suitable for low-cost and high sensitivity applications. Specifically, the ones that need to get rid of the hard cryogenic cooling conditions, or at least, relax them and allow the system to work efficiently at higher temperatures. For instance, portable mm-wave and THz systems for quality control, security, and biochemistry. Finally, in this part, the proposed DRA elements and arrays, due to their low cost, high gain, and low losses, can be used for sensing applications and 5G base station antennas.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Raed Shubair.- Secretario: Adrián Amor Martín.- Vocal: José Manuel Fernández Gonzále

    Planar Antennas

    Get PDF
    This article reviews the state of the art in broadband antennas for emerging UWB applications and addresses the important issues of the broadband antenna design for UWB applications. First, a variety of planar monopoles with finite ground planes are reviewed. Next, the roll antennas with enhanced radiation performance are outlined. After that, the planar antennas printed on PCBs are described. A directional antipodal Vivaldi antenna is also presented for UWB applications. Last, a UWB antenna for wearable applications is exemplifie

    Towards an Advanced Automotive Radar Front-end Based on Gap Waveguide Technology

    Get PDF
    This thesis presents the early works on dual circularly polarized array antenna based on gap waveguide, also microstrip-to-waveguide transitions for integration of automotive radar front-end. Being the most widely used radar antenna, PCB antenna suffers from dielectric loss and design flexibility. Next generation automotive radars demand sophisticated antenna systems with high efficiency, which makes waveguide antenna become a better candidate. Over the last few years, gap waveguide has shown advantages for implementation of complicated antenna systems. Ridge gap waveguides have been widely used in passive gap waveguide components design including slot arrays. In this regard, two transitions between ridge gap waveguides and microstrip lines are presented for the integration with gap waveguide antennas. The transitions are verified in both passive and active configuration. Another work on packaging techniques is presented for integration with inverted microstrip gap waveguide antennas.Systems utilizing individual linear polarization (LP) that lack polarimetric capabilities are not capable of measuring the full scattering matrix, thus losing information about the scenery. To develop a more advanced radar system with better detectability, dual circularly polarized gap waveguide slot arrays for polarimetric radar sensing are investigated. An 8 78 planar array using double grooved circular waveguide polarizer is presented. The polarizers are compact in size and have excellent polarization properties. Multi-layer design of the array antenna benefits from the gap waveguide technology and features better performance. The works presented in this thesis laid the foundation of future works regarding integration of the radar front end. More works on prototyping radar systems using gap waveguide technology will be presented in future publications

    UHF Antenna Design for AFIT Random Noise Radar

    Get PDF
    The design of a small ultra-high frequency (UHF) antenna for an ultra-wideband (UWB) random noise radar (RNR) system was undertaken to improve system bandwidth and reduce overall system size. The Vivaldi dipole antenna class showed the greatest potential for high performance in this specific application. After extensive computer simulation, three designs were built using two printed circuit board antenna construction methods. The antipodal chopped Vivaldi dipole antenna, built with a milling machine, achieved a wider bandwidth and more uniform spectral performance characteristics. Though current results show improvement over the current log-periodic antenna (LPA) used on the system, greater performance could possibly be achieved with higher fidelity construction methods. The chopped Vivaldi dipole antenna can be classified as a highly efficient, electrically small antenna optimized for UWB applications, due to the combination of small size as well as a nearly uniform frequency response and low dispersion in the UHF bandwidth. Though designed for AFIT\u27s Noise Network (NoNET) system, a UHF UWB RNR, the antenna could be applied to a variety of UHF systems looking to optimize the trade-off between size and power budgets

    Integration of Planar Antennas with MMIC Active Frontends for THz Imaging Applications

    Get PDF
    In recent years, there has been constant growth in using THz frequencies or mm, sub- mm wavelengths for various applications such as: Astronomy, Atmospheric studies, security, bio-medical imaging. All these applications are now seen more feasible due to rapid enhancements of semi-conductor processing technologies. The state of the art MMIC processing techniques offering increased cut-off frequencies (> 500 GHz) of HEMT/HBT transistors open up new opportunities for integrating systems on chip along with an antenna for either Transmit/Receive architecture. The work carried out in this thesis mainly deals with the development of antenna structures which are compatible to available MMIC processes and have well defined interface with the active circuit components for microwave as well as mm/sub-mm wave applications. The thesis briefly reviews the THz applications and modern MMIC process techniques. There- after the emphasis is on various possible antenna structures which are feasible to fabricate with MMIC layer topologies. Such antenna structures are further compared in terms of their Gain, Bandwidth, Directivity, Gaussian Coupling Efficiency and Compactness. The main focus of the thesis is towards the development of multi-pixel front ends for THz imaging of concealed weapons for security applications. The requirement in this type of application is the heterodyne detection of reflected THz signals from the distant objects (> 20 m) with tightly integrated pixels constituting of antenna integrated receiver (Antenna + Mixer + LO-Multiplier chain) giving real-time video imaging. Thus the work is focused towards Co-design of Antenna + Mixer aiming towards compactness and minimizing physical area of pixel for tighter integration. One of the important results obtained in this work, is the integration of a Double Slot Antenna with a sub-harmonically pumped resistive mixer. The novelty in this work is the new geometrical placements of slots and microstrip feed network. This new topology has differential excitation of two parallel slots for broadside beam. With this new arrangement, the need of conventional power combining network from two slots is eliminated and the transistors can directly be placed between the two slots, thus minimizing the physical area. Such arrangement is fabricated and tested at frequency of 200 GHz using 50 nm HEMT process. Encouraging results are obtained with mixer conversion loss of ~15 dB with +3 dBm LO power at sub-harmonic of 100 GHz. The next key result of this thesis is the integration of a differential 2 x 2 array of microstrip patch antennas with Gilbert Cell type sub-harmonically pumped mixer. This integration is achieved using 250 nm DHBT process. Considering the antenna ohmic efficiency, mixer conversion loss and gain of IF amplifier; the overall receiver front end features a conversion gain of ~ 14±1 dB at frequency of 320 GHz when pumped with sub-harmonic LO of 160 GHz with ~4 dBm on chip power. This receiver was also tested close to 340 GHz, which is a target frequency for security imaging applications. Another important aspect of this work is to quantify the ability of a planar antenna to couple radiated power in to the THz quasi-optical system. This is often evaluated as Gaussian Coupling Efficiency or Gaussicity. Therefore MMIC integrated antennas are needed to be characterized in terms of their Gaussicity as well. For this, a new algorithm has been developed which accepts the far-field of the antenna as input and computes the optimum beam parameters (waist and its position) which maximize the Gaussicity. Furthermore this algorithm is applied to different antenna array configurations to quantify their radiation pattern for Gaussian Coupling Efficiency

    New Integrated Waveguides Concept and Development of Substrate Integrated Antennas with Controlled Boundary Conditions

    Get PDF
    The unprecedented development of substrate integrated circuits (SICs) has made a widespread necessity for further studies and development of waveguides and antennas based on this technology. As the operating frequency is on the rise, the conventional designs of the substrate integrated components are becoming more problematic and costly. Therefore, some techniques are proposed to improve the performance of the waveguides and antennas based on the concept of substrate integrated technology. First, the problems of the recently developed ridge gap waveguide (RGW) are resolved by introducing a new configuration of this technology which has considerable advantages over the original version of the RGW regarding its construction technology, propagation mode, characteristic impedance, and insertion loss. Second, the configuration of substrate integrated waveguide (SIW), which has been widely accepted for planar and integrated microwave circuits, is modified to operate with low insertion loss at high frequencies without bearing the anisotropic nature of the dielectric material. The substrate integrated antennas have a strong potential to be used in the compact wireless devices as they can be easily integrated with the baseband circuits. In the horn family, the H-plane horn antenna that can be implemented in the integrated form has received considerable attention in recent years. However, numerous problems are associated with this antenna such as limited bandwidth, tapered aperture distribution, high back radiation, and E-plane asymmetry. Several new techniques are introduced to improve the performance of this antenna, especially at millimeter wave frequencies
    corecore