6,237 research outputs found

    High-dimensional cluster analysis with the masked EM algorithm

    Get PDF
    This is an Open Access article published under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) license https://creativecommons.org/licenses/by/3.0/Cluster analysis faces two problems in high dimensions: the "curse of dimensionality" that can lead to overfitting and poor generalization performance and the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of spike sorting for nextgeneration, high-channel-count neural probes. In this problem, only a small subset of features provides information about the cluster membership of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective.We introduce a "masked EM" algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data and to real-world high-channel-count spike sorting data.Peer reviewe

    Spike sorting for large, dense electrode arrays

    Get PDF
    Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%

    Neural Expectation Maximization

    Full text link
    Many real world tasks such as reasoning and physical interaction require identification and manipulation of conceptual entities. A first step towards solving these tasks is the automated discovery of distributed symbol-like representations. In this paper, we explicitly formalize this problem as inference in a spatial mixture model where each component is parametrized by a neural network. Based on the Expectation Maximization framework we then derive a differentiable clustering method that simultaneously learns how to group and represent individual entities. We evaluate our method on the (sequential) perceptual grouping task and find that it is able to accurately recover the constituent objects. We demonstrate that the learned representations are useful for next-step prediction.Comment: Accepted to NIPS 201
    corecore