3,192 research outputs found

    Two- and Three-dimensional High Performance, Patterned Overlay Multi-chip Module Technology

    Get PDF
    A two- and three-dimensional multi-chip module technology was developed in response to the continuum in demand for increased performance in electronic systems, as well as the desire to reduce the size, weight, and power of space systems. Though developed to satisfy the needs of military programs, such as the Strategic Defense Initiative Organization, the technology, referred to as High Density Interconnect, can also be advantageously exploited for a wide variety of commercial applications, ranging from computer workstations to instrumentation and microwave telecommunications. The robustness of the technology, as well as its high performance, make this generality in application possible. More encouraging is the possibility of this technology for achieving low cost through high volume usage

    On Mitigation of Side-Channel Attacks in 3D ICs: Decorrelating Thermal Patterns from Power and Activity

    Full text link
    Various side-channel attacks (SCAs) on ICs have been successfully demonstrated and also mitigated to some degree. In the context of 3D ICs, however, prior art has mainly focused on efficient implementations of classical SCA countermeasures. That is, SCAs tailored for up-and-coming 3D ICs have been overlooked so far. In this paper, we conduct such a novel study and focus on one of the most accessible and critical side channels: thermal leakage of activity and power patterns. We address the thermal leakage in 3D ICs early on during floorplanning, along with tailored extensions for power and thermal management. Our key idea is to carefully exploit the specifics of material and structural properties in 3D ICs, thereby decorrelating the thermal behaviour from underlying power and activity patterns. Most importantly, we discuss powerful SCAs and demonstrate how our open-source tool helps to mitigate them.Comment: Published in Proc. Design Automation Conference, 201

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Technologies for 3D Heterogeneous Integration

    Full text link
    3D-Integration is a promising technology towards higher interconnect densities and shorter wiring lengths between multiple chip stacks, thus achieving a very high performance level combined with low power consumption. This technology also offers the possibility to build up systems with high complexity just by combining devices of different technologies. For ultra thin silicon is the base of this integration technology, the fundamental processing steps will be described, as well as appropriate handling concepts. Three main concepts for 3D integration have been developed at IZM. The approach with the greatest flexibility called Inter Chip Via - Solid Liquid Interdiffusion (ICV-SLID) is introduced. This is a chip-to-wafer stacking technology which combines the advantages of the Inter Chip Via (ICV) process and the solid-liquid-interdiffusion technique (SLID) of copper and tin. The fully modular ICV-SLID concept allows the formation of multiple device stacks. A test chip was designed and the total process sequence of the ICV-SLID technology for the realization of a three-layer chip-to-wafer stack was demonstrated. The proposed wafer-level 3D integration concept has the potential for low cost fabrication of multi-layer high-performance 3D-SoCs and is well suited as a replacement for embedded technologies based on monolithic integration. To address yield issues a wafer-level chip-scale handling is presented as well, to select known-good dies and work on them with wafer-level process sequences before joining them to integrated stacks.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Microsystems technology: objectives

    Get PDF
    This contribution focuses on the objectives of microsystems technology (MST). The reason for this is two fold. First of all, it should explain what MST actually is. This question is often posed and a simple answer is lacking, as a consequence of the diversity of subjects that are perceived as MST. The second reason is that a map of the somewhat chaotic field of MST is needed to identify sub-territories, for which standardization in terms of system modules an interconnections is feasible. To define the objectives a pragmatic approach has been followed. From the literature a selection of topics has been chosen and collected that are perceived as belonging to the field of MST by a large community of workers in the field (more than 250 references). In this way an overview has been created with `applications¿ and `generic issues¿ as the main characteristics

    PwrSoC (integration of micro-magnetic inductors/transformers with active semiconductors) for more than Moore technologies

    Get PDF
    This paper introduces the concept of power supply on chip (PwrSoC) which will enable the development of next-generation, functionally integrated, power management platforms with applications in dc-dc conversion, gate drives, isolated power transmission and ultimately, high granularity, on-chip, power management for mixed-signal, SOC chips. PwrSoC will integrate power passives with the power management IC, in a 3D stacked or monolithic form factor, thereby delivering the performance of a high-efficiency dc-dc converter within the footprint of a low-efficiency linear regulator. A central element of the PwrSoC concept is the fabrication of power micro-magnetics on silicon to deliver micro-inductors and micro-transformers. The paper details the magnetics on silicon process which combines thin film magnetic core technology with electroplated copper conductors. Measured data for micro-inductors show inductance operation up to 20 MHz, footprints down to 0.5 mm(2), efficiencies up to 93% and dc current carrying capability up to 600 mA. Measurements on micro-transformers show voltage gain of approximately - 1 dB at between 10 MHz and 30 MHz

    On the design partitioning of 3D monolithic circuits

    Get PDF
    Conventional three-dimensional integrated circuits (3D ICs) stack multiple dies vertically for higher integration density, shorter wirelength, smaller footprint, faster speed and lower power consumption. Due to the large through-silicon-via (TSV) sizes, 3D design partitioning is typically done at the architecture-level With the emerging monolithic 3D technology, TSVs can be made much smaller, which enables potential block-level partitioning. However, it is still unclear how much benefit can be obtained by block-level partitioning, which is affected by the number of tiers and the sizes of TSVs. In this thesis, an 8-bit ripple carry adder was used as an example to explore the impact of TSV size and tier number on various tradeoffs between power, delay, footprint and noise. With TSMC 0.18um technology, the study indicates that when the TSV size is below 100nm, it can be beneficial to perform block-level partitioning for smaller footprint with minimum power, delay and noise overhead --Abstract, page iii
    corecore